Math, asked by shailsharma200319, 17 hours ago

Using the function

 {x}^{ \frac{1}{x} }  \: and \: x > 0 \: prove \: that \:  {e}^{\pi}  >  {\pi}^{e}

Answers

Answered by mathdude500
13

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {\bigg(x\bigg) }^{\dfrac{1}{x} }  \\

On taking log on both sides, we get

\rm :\longmapsto\:logf(x) = log {\bigg(x\bigg) }^{\dfrac{1}{x} }  \\

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx \: }}} \\

So, using this, we get

\rm :\longmapsto\:logf(x) = \dfrac{1}{x}  \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logf(x) = \dfrac{d}{dx}\bigg(\dfrac{1}{x}  \: logx\bigg)

\rm :\longmapsto\:\dfrac{1}{f(x)}f'(x) = \dfrac{1}{x}\dfrac{d}{dx}logx + logx\dfrac{d}{dx} \dfrac{1}{x}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \: }}} \\

and

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} \frac{1}{ {x}^{n} }  \:  =  \:  \frac{ - n}{ {x}^{n + 1} } \: }}} \\

So, using this result, we get

\rm :\longmapsto\:f'(x) = f(x)\bigg[\dfrac{1}{x} \times \dfrac{1}{x} + logx\bigg(\dfrac{ - 1}{ {x}^{2} } \bigg)  \bigg]

\rm :\longmapsto\:f'(x) = f(x)\bigg[\dfrac{1}{ {x}^{2} } + logx\bigg(\dfrac{ - 1}{ {x}^{2} } \bigg)  \bigg]

\rm :\longmapsto\:f'(x) = \dfrac{f(x)}{ {x}^{2} } \bigg[1  -  logx\bigg]

Now, For critical points, we have f'(x) = 0

\rm :\longmapsto\:1 - logx  = 0

\rm :\longmapsto\:- logx  =  - 1

\rm :\longmapsto\:logx  = 1

\rm :\longmapsto\:logx  = loge

\bf\implies \:x = e

Now, when

\rm :\longmapsto\:x > e

\rm :\longmapsto\:f'(x) < 0

\bf\implies \:f(x) \: is \: decreasing \: function

So, By using Definition of decreasing functions,

\rm :\longmapsto\:\pi > e \:  \: \rm\implies \:f(\pi) < f(e)

\rm :\longmapsto\:{\bigg(\pi\bigg) }^{\dfrac{1}{\pi} } < {\bigg(e\bigg) }^{\dfrac{1}{e} }

\rm\implies \: {\pi}^{e}  <  {e}^{\pi}

\bf\implies \: {e}^{\pi}  >  {\pi}^{e}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ \dfrac{d}{dx} log(x)  =  \frac{1}{x} \: }} \\

\boxed{\tt{ \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }} \\

\boxed{\tt{  log(e)  = 1 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by OoAryanKingoO78
10

Answer:

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {\bigg(x\bigg) }^{\dfrac{1}{x} }  \\

On taking log on both sides, we get

\rm :\longmapsto\:logf(x) = log {\bigg(x\bigg) }^{\dfrac{1}{x} }  \\

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ log {x}^{y} = y \: logx \: }}} \\

So, using this, we get

\rm :\longmapsto\:logf(x) = \dfrac{1}{x}  \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logf(x) = \dfrac{d}{dx}\bigg(\dfrac{1}{x}  \: logx\bigg)

\rm :\longmapsto\:\dfrac{1}{f(x)}f'(x) = \dfrac{1}{x}\dfrac{d}{dx}logx + logx\dfrac{d}{dx} \dfrac{1}{x}

We know,

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx}logx \:  =  \:  \frac{1}{x} \: }}} \\

and

\purple{\rm :\longmapsto\:\boxed{\tt{ \dfrac{d}{dx} \frac{1}{ {x}^{n} }  \:  =  \:  \frac{ - n}{ {x}^{n + 1} } \: }}} \\

So, using this result, we get

\rm :\longmapsto\:f'(x) = f(x)\bigg[\dfrac{1}{x} \times \dfrac{1}{x} + logx\bigg(\dfrac{ - 1}{ {x}^{2} } \bigg)  \bigg]

\rm :\longmapsto\:f'(x) = f(x)\bigg[\dfrac{1}{ {x}^{2} } + logx\bigg(\dfrac{ - 1}{ {x}^{2} } \bigg)  \bigg]

\rm :\longmapsto\:f'(x) = \dfrac{f(x)}{ {x}^{2} } \bigg[1  -  logx\bigg]

Now, For critical points, we have f'(x) = 0

\rm :\longmapsto\:1 - logx  = 0

\rm :\longmapsto\:- logx  =  - 1

\rm :\longmapsto\:logx  = 1

\rm :\longmapsto\:logx  = loge

\bf\implies \:x = e

Now, when

\rm :\longmapsto\:x > e

\rm :\longmapsto\:f'(x) < 0

\bf\implies \:f(x) \: is \: decreasing \: function

So, By using Definition of decreasing functions,

\rm :\longmapsto\:\pi > e \:  \: \rm\implies \:f(\pi) < f(e)

\rm :\longmapsto\:{\bigg(\pi\bigg) }^{\dfrac{1}{\pi} } < {\bigg(e\bigg) }^{\dfrac{1}{e} }

\rm\implies \: {\pi}^{e}  <  {e}^{\pi}

\bf\implies \: {e}^{\pi}  >  {\pi}^{e}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

FORMULA USED

\boxed{\tt{ \dfrac{d}{dx} log(x)  =  \frac{1}{x} \: }} \\

\boxed{\tt{ \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }} \\

\boxed{\tt{  log(e)  = 1 \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

LEARN MORE

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions