Using the identity (a + b)2 = a2 + 2ab + b2, derive the formula for (a + b + c)2. Hence, find
the value of (2x - 3y + 4z)2.
Answers
Step-by-step explanation:
hope it helps u all the best
Answer:
Step-by-step explanation:
We know : ( a + b )2 = a2 + 2 a b + b2 , We find value of ( a + b + c )2 by using given identity , As :
⇒⇒[ ( a + b ) + c ]2 , Now we use given identity and get :
⇒⇒( a + b )2 + 2 ( a + b ) ( c ) + c2
⇒⇒( a + b )2 + 2 a c + 2 b c + c2
⇒⇒a2 + 2 a b + b2 + 2 c a+ 2 b c + c2
⇒⇒a2 + b2 + c2 + 2 a b + 2 b c + 2 c a
Hence,
( a + b + c )2 = a2 + b2 + c2 + 2 a b + 2 b c + 2 c a
Now we use above formula to get value of ( 2 x - 3 y + 4 z )2 ,As :
⇒⇒[ 2 x + ( - 3 y ) + 4 z ]2
⇒⇒ ( 2 x )2 + ( - 3 y )2 + ( 4 z )2 + 2 ( 2 x )( - 3 y ) + 2 ( - 3 y ) ( 4 z ) + 2 ( 4 z ) ( 2 x )
⇒⇒ 4 x 2 + 9 y 2 + 16 z 2 - 12 x y - 24 y z + 16 z x