Math, asked by parbhatsharma05, 9 months ago

using the identity find the value of (97)^3​

Answers

Answered by DrNykterstein
4

</p><p>\sf  \rightarrow \quad  {(97)}^{3}  \\  \\ \sf  \rightarrow \quad {(100 - 3)}^{3}  \\  \\  \sf  \quad  {(a - b)}^{3}  =  {a}^{3}  -  {b}^{3}  - 3ab(a - b) \\  \\ \sf  \rightarrow \quad  {100}^{3}  -  {3}^{3}  - 3 \cdot 100 \cdot 3(100 - 3) \\  \\ \sf  \rightarrow \quad 1000000 - 27 - 900 \cdot 97 \\  \\ \sf  \rightarrow \quad 1000000 - 27 - 87300 \\  \\ \sf  \rightarrow \quad 1000000 - 87327 \\  \\ \sf  \rightarrow \quad 912673</p><p>

Answered by Anonymous
2

Answer:

(97)^3

(100-3)^3

(a-b) ^3

a^3 - b^3 -3ab(a-b)

(100)^3 - 3^3 -3*100*3 (100-3)

1000000-27-900 (97)

999973-87300

912673

Step-by-step explanation:

mark me as brainliest.......

Similar questions