Using the identity sec²θ= 1+ tan² θ, prove that
tanθ+secθ-1 1+sinθ
------------------- = ---------
tanθ-secθ +1 cosθ
Answers
Answered by
0
Step-by-step explanation:
Consider the LHS.
⇒
tanθ−secθ+1
tanθ+secθ−1
⇒
tanθ−secθ+1
tanθ+secθ−(sec
2
θ−tan
2
θ)
(∵sec
2
θ−tan
2
θ=1)
⇒
tanθ−secθ+1
(tanθ+secθ)−(secθ+tanθ)(secθ−tanθ)
(∵a
2
−b
2
=(a+b)(a−b))
⇒
tanθ−secθ+1
(tanθ+secθ)[1−(secθ−tanθ)]
⇒
tanθ−secθ+1
(tanθ+secθ)(tanθ−secθ+1)
⇒tanθ+secθ=
cosθ
sinθ
+
cosθ
1
=
cosθ
1+sinθ
Here,
LHS=RHS
Hence proved....
Similar questions