Math, asked by gaurav6759, 4 months ago

using the identity (x+a)(x+b),find the product of (3y^2+9)(3y^2-5)

Answers

Answered by Flaunt
80

\huge\bold{\gray{\sf{Answer:}}}

\bold{Explanation:}

Given:

\sf (3 {y}^{2}  + 9)(3 {y}^{2}  - 5)

To Find :

Product

Above equation is in the form of (x+a)(x-b)

So,here we use this identity:

\bold{\boxed{(x + a)(x - b) =  {x}^{2}  - (a + b)x + ab}}

X is 3y^2 ,a=9 and b=5

\sf (3 {y}^{2}  + 9)(3 {y}^{2}  - 5) =  {(3 {y}^{2} )}^{2}  - (9 + 5)x + 9 \times 5

\sf  = 9 {y}^{4}  - 14x + 45

Other Identities:

  • \bold{\boxed{ {(x -y)}^{2}  =  {x}^{2}  +  {y}^{2}  - 2xy}}
  • \bold{\boxed{ {x}^{3}   +   {y}^{3}  =  {x}^{3}  +  {y}^{3}   + 3xy(x + y)}}
  • \bold{\boxed{(x + a)(x  + b) =  {x}^{2}  + (a+ b)x + ab}}
  • \bold{\boxed{ {(x +y)}^{3}  =  {x}^{3}  +  {y}^{3}  +3xy[x+y]}}

  • \bold{\boxed{(x + a)(x - b) =  {x}^{2}  + (a - b)x - ab}}
  • \bold{\boxed{(x - a)(x - b) =  {x}^{2}  - (a + b)x + ab}}

sreekarreddy91: Please can you inbox me please I have some questions
Similar questions