Math, asked by chrisfandypada, 1 month ago

Using the mathematical induction technique, prove or disprove the following equations:

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Let us assume that

\rm :\longmapsto\:P(n) : \: 1 + 3 + 5 +  -  -  -  + (2n - 1) =  {n}^{2}

Step :- 1 For n = 1

\rm :\longmapsto\:1 =  {1}^{2}  = 1

\rm :\implies\:P(n) \: is \: true \: for \: n \:  =  \: 1

Step :- 2

\rm :\longmapsto\:Let \: assume \: for \: n = k, \: P(n) \: is \: true \: where \: k \in \: N

So, we get

\rm :\longmapsto\:P(k) : \: 1 + 3 + 5 +  -  -  -  + (2k - 1) =  {k}^{2}

Step :- 3

\rm :\longmapsto\:Now, \: we \: have \: to \: prove\: for \: n = k + 1, \: P(n) \: is \: true

So,

\rm :\longmapsto \: 1 + 3 + 5 +  -  -  -  + (2k - 1)  + (2k + 1)=  {(k + 1)}^{2}

Consider, LHS

\rm :\longmapsto \: 1 + 3 + 5 +  -  -  -  + (2k - 1)  + (2k + 1)

\rm \:  \:  =  \: \underbrace{ 1 + 3 + 5 +  -  -  -  + (2k - 1)} + (2k + 1)

 \rm \:  \:  =  \:  \:  {k}^{2}  + 2k + 1

 \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg \{ \because \:using \: step \: 2 \bigg \}}

 \rm \:  \:  =  \:  \:  {(k + 1)}^{2}

= RHS

\bf\implies \:P(n) \: is \: true \: for \: n \:  =  \: k + 1

So,

By the Process of Principal of Mathematical Induction,

 \:  \:  \:  \:  \:  \: \underbrace{\boxed{ \bf{ \: 1 + 3 + 5 +  -  -  -  + (2n - 1) =  {n}^{2} }}}

Answered by barani79530
1

Step-by-step explanation:

please mark as best answer and thank me

Attachments:
Similar questions