Using the principal, find the derivative of
Answers
Answer:
Using the principal, find the derivative of . Answer . vincy95.
Answer:
Let y=tan√x
Let δy be an increment in y, corresponding to an increment δx in x.
Then y+δy=tan(√x+δx)
=> Δy = tan(√x+Δx) - y
⇒δy=tan(√x+δx)−√tan√x
⇒δy=sin(√x+δ)xcos(√x+δx)−sin√xcos√x
⇒δy=sin(√x+δx)×cos√x−cos(√x+δx)×sinx√(cos√x+δx)(cos√x)
⇒δy=sin[√x+δx−√x][(co√sx+δx)](cos√x)
⇒δyδx=sin[√(x+δx)−√x]δx×1/(cos√x+δx)(cos√x)
⇒δy/δx=sin[√(x+δx)−√x]/x+δx−x ×1/[(cos√(x+δx)](cosx√)
⇒δy/δx=sin[√(x+δx)−√x](√x+δx)^2−(√x)^2×1/[cos(√x+δx)](cos√x)
⇒δy/δx=sin(√x+δx−√x)[√x+√(δx−x)]×1/(√x+√δx+x)×1/[cos(√x+δx)](cosx√)
⇒limδx→0
δy/δx= limδx→0 [sin(√x+δx−√x)/(x+δx√−x√)×1(x+δx√+x√)×1(cosx+δx√)(cos√x)]
⇒dydx=limδx→0 sin(x+δx√−x√)(√x+δx−√x)×limδx→0 1/(√x+δx+√x)×limδx→0 1/(cos√x+δx)(cosx√)
⇒dydx=1×1/0√x+0+√x ×1/cos√(x+0).cos√x
⇒dydx=12x√×1cos2x√
⇒dydx=sec^2√x/2√x