Using the relation 2 (1 - cos x) < x^2 , x ≠ 0 or otherwise, prove that sin (tan x) ≥ x, ∀ x ∈ [0, pi/4]
Answers
Answered by
3
Mark it brainliest answer please
It is enough to show sin(x)≥arctan(x)sin(x)≥arctan(x)over x∈[0,1]x∈[0,1], or cos(x)≥11+x2cos(x)≥11+x2, then integrate both sides. Given the hint, that is straightforward:
∀x∈[0,1],(1+x2)cos(x)≥(1+x2)(1−x22)≥1(1)(1)∀x∈[0,1],(1+x2)cos(x)≥(1+x2)(1−x22)≥1
hence for any z∈[0,1]z∈[0,1] we have cos(z)≥11+z2cos(z)≥11+z2 and
∀u∈[0,1],sin(u)=∫u0cos(z)dz≥∫u0dzz2+1=arctan(u)(2)(2)∀u∈[0,1],sin(u)=∫0ucos(z)dz≥∫0udzz2+1=arctan(u)
so by setting u=tan(x)u=tan(x) we have:
∀x∈[0,π4],sin(tan(x))≥x
It is enough to show sin(x)≥arctan(x)sin(x)≥arctan(x)over x∈[0,1]x∈[0,1], or cos(x)≥11+x2cos(x)≥11+x2, then integrate both sides. Given the hint, that is straightforward:
∀x∈[0,1],(1+x2)cos(x)≥(1+x2)(1−x22)≥1(1)(1)∀x∈[0,1],(1+x2)cos(x)≥(1+x2)(1−x22)≥1
hence for any z∈[0,1]z∈[0,1] we have cos(z)≥11+z2cos(z)≥11+z2 and
∀u∈[0,1],sin(u)=∫u0cos(z)dz≥∫u0dzz2+1=arctan(u)(2)(2)∀u∈[0,1],sin(u)=∫0ucos(z)dz≥∫0udzz2+1=arctan(u)
so by setting u=tan(x)u=tan(x) we have:
∀x∈[0,π4],sin(tan(x))≥x
Similar questions