Using the remainder theorem, factorise 4x3 + 7x2 – 36x - 63
Answers
Answered by
3
Answer:
(x + 3)(4x + 7)(x - 3)
Step-by-step explanation:
p(x) = 4x³ + 7x² - 36x - 63
p(3) = 4(27) + 7(9) - 36(3) - 63 = 0 ⇒ (x - 3) is factor of given polynomial.
(4x³ + 7x² - 36x - 63) ÷ (x - 3) = 4x² + 19x + 21
q(x) = 4x² + 19x + 21
q(- 3) = 4(9) - 57 +21 = 0 ⇒ (x + 3) is factor of (4x² + 19x + 21)
(4x² + 19x + 21) ÷ (x + 3) = 4x + 7
r(x) = 4x + 7
r() = 4() + 7 = 0 ⇒ (x + ) is factor of (4x + 7)
(4x + 7) ÷ (x + ) = 4
4x³ + 7x² - 36x - 63 = (x + 3)(4x + 7)(x - 3)
Attachments:
Similar questions