Using the trig-identity we will solve the problems on eliminate theta (θ) between the equations:
tan θ - cot θ = a and cos θ + sin θ = b.
Answers
Answered by
1
Solution
tan θ – cot θ = a ………. (A)
cos θ + sin θ = b ………. (B)
Squaring both sides of (B) we get,
cos2 θ + sin2 θ + 2cos θ sin θ = b2
or, 1 + 2 cos θ sin θ = b2
or, 2 cos θ sin θ = b2 - 1 ………. (C)
Again, from (A) we get, (sin θ/cos θ) – (cos θ/sin θ) = a
or, (sin2 θ - cos2 θ)/(cos θ sin θ) = a
or, sin2θ - cos2θ = a sin θ cos θ
or, (sin θ + cos θ) (sin θ - cos θ) = a ∙ (b2 - 1)/2 ………. [by (C)]
or, b(sin θ - cos θ)= (½) a (b2 - 1) [by (B)]
or, b2 (sin θ - cos θ)2 = (1/4) a2 (b2 - 1)2, [Squaring both the sides]
or, b2 [(sin θ + cos θ)2 - 4 sinθ cos θ] = (1/4) a2 (b2 - 1)2
or, b2 [b2 - 2 ∙ (b2 - 1)] = (1/4) a2 (b2 - 1)2 [from (B) and (C)]
or, 4b2 (2 - b2) = a2 (b2 - 1)2
which is the required θ-eliminate.
tan θ – cot θ = a ………. (A)
cos θ + sin θ = b ………. (B)
Squaring both sides of (B) we get,
cos2 θ + sin2 θ + 2cos θ sin θ = b2
or, 1 + 2 cos θ sin θ = b2
or, 2 cos θ sin θ = b2 - 1 ………. (C)
Again, from (A) we get, (sin θ/cos θ) – (cos θ/sin θ) = a
or, (sin2 θ - cos2 θ)/(cos θ sin θ) = a
or, sin2θ - cos2θ = a sin θ cos θ
or, (sin θ + cos θ) (sin θ - cos θ) = a ∙ (b2 - 1)/2 ………. [by (C)]
or, b(sin θ - cos θ)= (½) a (b2 - 1) [by (B)]
or, b2 (sin θ - cos θ)2 = (1/4) a2 (b2 - 1)2, [Squaring both the sides]
or, b2 [(sin θ + cos θ)2 - 4 sinθ cos θ] = (1/4) a2 (b2 - 1)2
or, b2 [b2 - 2 ∙ (b2 - 1)] = (1/4) a2 (b2 - 1)2 [from (B) and (C)]
or, 4b2 (2 - b2) = a2 (b2 - 1)2
which is the required θ-eliminate.
Anonymous:
good answer bro
Answered by
0
tan θ – cot θ = a ………. (i)
cos θ + sin θ = b ………. (ii)
Squaring both sides of (B) we get,
cos2 θ + sin2 θ + 2cos θ sin θ = b2
= 1 + 2 cos θ sin θ = b2
= 2 cos θ sin θ = b2 - 1 ………. (iii)
Again, from (A) we get, (sin θ/cos θ) – (cos θ/sin θ) = a
= (sin2 θ - cos2 θ)/(cos θ sin θ) = a
= sin2θ - cos2θ = a sin θ cos θ
= (sin θ + cos θ) (sin θ - cos θ) = a ∙ (b2 - 1)/2 ………. [by (iii)]
= b(sin θ - cos θ)= (½) a (b2 - 1) [by (ii)]
= b2 (sin θ - cos θ)2 = (1/4) a2 (b2 - 1)2, [Squaring both the sides]
= b2 [(sin θ + cos θ)2 - 4 sinθ cos θ] = (1/4) a2 (b2 - 1)2
= b2 [b2 - 2 ∙ (b2 - 1)] = (1/4) a2 (b2 - 1)2 [from (ii) and (iii)]
= 4b2 (2 - b2) = a2 (b2 - 1)2
which is the required θ-eliminate.
cos θ + sin θ = b ………. (ii)
Squaring both sides of (B) we get,
cos2 θ + sin2 θ + 2cos θ sin θ = b2
= 1 + 2 cos θ sin θ = b2
= 2 cos θ sin θ = b2 - 1 ………. (iii)
Again, from (A) we get, (sin θ/cos θ) – (cos θ/sin θ) = a
= (sin2 θ - cos2 θ)/(cos θ sin θ) = a
= sin2θ - cos2θ = a sin θ cos θ
= (sin θ + cos θ) (sin θ - cos θ) = a ∙ (b2 - 1)/2 ………. [by (iii)]
= b(sin θ - cos θ)= (½) a (b2 - 1) [by (ii)]
= b2 (sin θ - cos θ)2 = (1/4) a2 (b2 - 1)2, [Squaring both the sides]
= b2 [(sin θ + cos θ)2 - 4 sinθ cos θ] = (1/4) a2 (b2 - 1)2
= b2 [b2 - 2 ∙ (b2 - 1)] = (1/4) a2 (b2 - 1)2 [from (ii) and (iii)]
= 4b2 (2 - b2) = a2 (b2 - 1)2
which is the required θ-eliminate.
Similar questions