Math, asked by safwanshaikh940, 7 days ago

using the truth table prove that the following is a logical equivalence.
1)~p^q=(p v q)^~p​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Consider,

\red{\rm :\longmapsto\: \sim \: p \:  \land \: q}

\begin{gathered}\boxed{\begin{array}{c|c|c|c} \bf p & \bf q& \bf  \sim \: p& \bf  \sim p \: \land \: q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}\\ \sf T & \sf T & \sf F& \sf F\\ \\\sf T & \sf F & \sf F& \sf F\\ \\\sf F & \sf T & \sf T& \sf T\\ \\\sf F & \sf F & \sf T& \sf F  \end{array}} \\ \end{gathered}

Now, Consider,

\red{\rm :\longmapsto\: (p \: \lor \: q) \land \:  \sim \: p}

\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \lor \: q& \bf  \sim p& \bf  (p \lor q) \land \sim p\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf F& \sf F\\ \\\sf T & \sf F & \sf T& \sf F& \sf F\\ \\\sf F & \sf T & \sf T& \sf T& \sf T\\ \\\sf F & \sf F & \sf F& \sf T& \sf F  \end{array}} \\ \end{gathered}

Hence, from above, we concluded that

\red{\bf :\longmapsto\: \sim \: p \:  \land \: q \:  =  \:  (p \: \lor \: q) \land \:  \sim \: p}

Additional Information :-

 \green{\begin{gathered}\boxed{\begin{array}{c|c|c|c|c} \bf p & \bf q& \bf p \: \lor \: q& \bf q  \:  \land \: p& \bf  p \:  \to \: q\\ \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{} & \frac{\qquad}{}& \frac{\qquad}{}\\ \sf T & \sf T & \sf T& \sf T& \sf T\\ \\\sf T & \sf F & \sf T& \sf F& \sf F\\ \\\sf F & \sf T & \sf T& \sf F& \sf T\\ \\\sf F & \sf F & \sf F& \sf F& \sf T  \end{array}} \\ \end{gathered}}

Similar questions