Math, asked by harshitsanhotra248, 5 hours ago

Using theorem, solve the equation
i. x + y + z = 9
ii. 2x + 5y +7z = 52
iii. 2x + y – z =0

Answers

Answered by abhiramputti
0

difficult sum but okay I will send you answer

Answered by monica789412
6

x=1,y=3,z=5 is the solution of the given equation.

Step-by-step explanation:

The given equations are \[x+y+z=9,2x+5y+7z=52,2x+y-z=0\]

The matrix equation is written as AX=B

\left( \begin{matrix}   1 & 1 & 1  \\   2 & 5 & 7  \\   2 & 1 & -1  \\\end{matrix} \right)\left( \begin{matrix}   x \\   y \\   z \\\end{matrix} \right)=\left( \begin{matrix}   9 \\   52\\   0 \\\end{matrix} \right)\

Augmented matrix,

\[\left[ A,B \right]\]=\left( \begin{matrix}   1 & 1 & 1 & 9 \\   2 & 5 & 7 &52  \\   2 & 1 & -1&0  \\\end{matrix} \right)

to simplify the matrix,

\[  & {{R}_{2}}\to {{R}_{2}}-2{{R}_{1}} \\  & {{R}_{3}}\to {{R}_{3}}-2{{R}_{1}} \\ \end{align}\]

\[\left[ A,B \right]\]=\left( \begin{matrix}   1 & 1 & 1 & 9 \\   0 & 3 & 5 &34  \\   0 &- 1 & -3&-18  \\\end{matrix} \right)

to simplify the matrix,

\[  & {{R}_{3}}\to {{3R}_{3}}+{{R}_{2}} \\ \end{align}\]

\[\left[ A,B \right]\]\sim \]\left( \begin{matrix}   1 & 1 & 1 & 9 \\   0 & 3 & 5 &34  \\   0 &0 & -4&-20  \\\end{matrix} \right)

Now,

A \[\sim \]\left( \begin{matrix}   1 & 1 & 1  \\   0 & 3 & 5  \\   0 &0 & -4\\\end{matrix} \right)

P(A)=3

\[\left[ A,B \right]\]\sim \]\left( \begin{matrix}   1 & 1 & 1 & 9 \\   0 & 3 & 5 &34  \\   0 &0 & -4&-20  \\\end{matrix} \right)

has the three non-zero rows,

P(\[\left[ A,B \right]\])=3

That is,P(A)=P(\[\left[ A,B \right]\])=3=number of unknowns.

So, the given system is consistent and has unique solution.

To find the solution, we rewrite the echelon form into the matrix form.

\left( \begin{matrix}   1 & 1 & 1  \\   0 & 3 & 5  \\   0 & 0 & -4  \\\end{matrix} \right)\left( \begin{matrix}   x \\   y \\   z \\\end{matrix} \right)=\left( \begin{matrix}   9 \\   34\\   -20 \\\end{matrix} \right)

x+y+z=9          (1)

2x+5y+7z=52   (2)

2x+y-z=0         (3)

(3) \[\Rightarrow \] z=5

(2) \[\Rightarrow \] 3y=34-25=9

y=3

(1) \[\Rightarrow \]

x=9-3-5\\\\x=1

x=1,y=3,z=5 is the unique solution of the given equation.

Similar questions