Math, asked by duttarabisankapesaff, 10 months ago

using trigonometrical identities... correct answer will be marked as brainliest and his or her account will be followed ​

Attachments:

Answers

Answered by pallavi7721
0

Answer:

(sin(90-55) cos55 +cos(90-55) sin55)/cosec^2 (90- 80) -tan^2 80

(cos^2 55 + sin^2 55) / (sec^2 80 - tan^2 80)

1/1

1 answer

Answered by Anonymous
6

 \huge \mathfrak \pink{answer}

 \bf{ \huge{ \boxed{ \red{ \tt{1 \: }}}}}

❖___________________________❖

❖step to step explanation ❖

  \rm{ \frac{sin35cos35 + cos35sin35}{ {cosec}^{2}10 -  {tan}^{2} 80} }

 \rm{ \frac{sin(35 + 55}{ {cosec}^{2}10 -  {tan}^{2}(90 - 10}}

 \rm{ \frac{sin90}{ {cosec}^{2}10 -  {cot}^{2}10} }

 \rm{ \frac{1}{1}}

 \rm \green{ = 1}

(or)

❁step to step explanation ❁

 \sf{ \sin35= sin(90 - 55) = cos55}

 \sf{cos35 = sin(90 - 55) = sin55}

 \sf{tan80 = tan(90 - 10) = cot10}

__________________________

 \rm \red{ {sin}^{2}a +  {cos}^{2}a = 1}

 \rm \red{ {cosec}^{2}a +  {cot}^{2}a = 1}

then

 \tt \blue{ \frac{ {cos}^{2}55 +  {sin}^{2}55}{ {cosec}^{2}10 -  {cot}^{2}10 }  =  \frac{1}{1} = 1}

Answer is 1

Similar questions