Math, asked by duttarabisankapesaff, 9 months ago

using trigonometrical identity. ...correct answer will be marked as brainliest and his or her account will be followed ​

Attachments:

Answers

Answered by BrainlyConqueror0901
72

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{{sin}^{2}  34 \degree +  {sin}^{2} 56 \degree + 2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree = 0}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies  {sin}^{2}  34 \degree +  {sin}^{2} 56 \degree + 2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree \\  \\ \red{\underline \bold{To \: Find:}} \\ \tt: \implies  {sin}^{2}  34 \degree +  {sin}^{2} 56 \degree + 2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree = ?

• According to given question :

\tt: \implies  {sin}^{2}  34 \degree +  {sin}^{2} 56 \degree + 2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree  \\ \\  \tt \circ \: sin \: (90 -  \theta) = cos  \: \theta \\  \\ \tt: \implies  {sin}^{2}  34 \degree +  {cos}^{2} 34 \degree + 2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree \\   \\  \tt \circ   \:  {sin}^{2}  \theta +  {cos}^{2}  \theta = 1 \\  \\ \tt: \implies  1 +2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree  \\  \\  \tt \circ \: tan(90 -  \theta) =  cot \: \theta \\  \\ \tt: \implies  1+ 2 tan  \: 18 \degree \: cot \: 18 \degree -  {cot}^{2} 30 \degree  \\  \\  \tt \circ \:tan \:  \theta \times cot  \: \theta = 1 \\  \\ \tt: \implies  1+ 2  \times 1 -  {cot}^{2} 30 \degree \\  \\  \tt \circ  \: cot \: 30 \degree =  \sqrt{3}  \\  \\ \tt: \implies  1+ 2  -  (\sqrt{3})^{2}  \\  \\ \tt: \implies  1+ 2  - 3 \\  \\ \tt: \implies  3 - 3 \\  \\  \green{\tt: \implies  0} \\  \\  \green{\tt \therefore  {sin}^{2}  34 \degree +  {sin}^{2} 56 \degree + 2 tan  \: 18 \degree \: tan \: 72 \degree -  {cot}^{2} 30 \degree = 0}

Answered by Saby123
0

</p><p>\huge{\tt{\pink{Hello!!! }}}

</p><p>\tt{\red{Identities \: Used \: - }}

 \tt{ \implies{ \purple{  \sin(90 -  \theta) =  \cos( \theta)  }}}

</p><p>\tt{\implies{\purple{ { \sin( \theta) }^2 + { \cos( \theta) }^2 = 1 }}}

 \tt{ \implies{ \purple{  \tan(90 -  \theta) =  \cot( \theta)  }}}

 \tt{ \implies{ \purple{  \tan( \theta) \times  \cot( \theta) = 1  }}}

 \tt{\implies{\purple{ \tan( 30° ) = \dfrac{1}{ \sqrt{3}} }}}

Using these identities and solving, we get the Answer as 0.

Similar questions