English, asked by akashsarkate677, 4 months ago

Using vectors prove that a quadrilateral is a rectangle if and
only if its diagonals are congruent and bisect each other.​


akashsarkate677: hi guys
akashsarkate677: hi teju

Answers

Answered by Anonymous
4

Answer:

Let ABCD be a quadrilateral.

This quadrilateral is square.

So,

∣  

AB

∣ = ∣  

BC

∣ = ∣  

CD

∣ = ∣  

DA

Now,

∣  

CD

∣ = ∣  

DC

∣  

DA

∣ = ∣  

AD

∣    

The diagonal are  

AC

  and  

DB

 

It is square. Then the diagonals bisect each other.

We have to prove that : -  

AC

 ⊥  

DB

 

from square law of addition

We know that                                                                

 

AC

=  

AB

+  

AD

  and

 

DB

 =  

AB

−  

AD

   

to prove that : -    

AC

 ⊥  

DB

  ⇒    

AC

∣.  

DB

 =0

So,

 

AC

.  

DB

 = (  

AB

+  

AD

).(  

AB

−  

AD

)

We know that,

(  

a

+  

b

).(  

a

−  

b

)  =  ∣  

a

∣  

2

 - ∣  

b

∣  

2

 

⇒  

AC

.  

DB

= ∣  

AC

∣  

2

−∣  

AD

∣  

2

 

Since, ABCD is a square.

So,                                                              

⇒∣  

AB

∣ = ∣  

AD

⇒  

AC

∣.  

DB

 = 0

⇒  

AC

⊥  

DB

 

Hence, Proved.

Explanation:


akashsarkate677: thnx dear
Anonymous: wlc
Similar questions