Math, asked by pragyaupadhyay2k21, 8 hours ago

using (x + a) (x+b) =x² + (a+b) x + ab, find . (i) 5.1 × 5.2 , (ii) 103× 98​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-(i)}}

\rm :\longmapsto\:5.1 \times 5.2

can be rewritten as

\rm \:  =  \: (5 + 0.1)(5 + 0.2)

So, using identity,

\rm :\longmapsto\:\boxed{\tt{ (x + a)(x + b) =  {x}^{2} + (a + b)x + ab}}

So, here,

\rm :\longmapsto\:x = 5

\rm :\longmapsto\:a = 0.1

\rm :\longmapsto\:b = 0.2

On substituting the values, we get

\rm \:  =  \:  {5}^{2} + (0.1 + 0.2)5 + (0.1)(0.2)

\rm \:  =  \:  25+ (0.3)5 + 0.02

\rm \:  =  \:  25.02+ 1.5

\rm \:  =  \:  26.52

 \red{\large\underline{\sf{Solution-ii}}}

 \red{\rm :\longmapsto\:103 \times 98}

 \red{\rm \:  =  \: (100 + 3)(100 - 2)}

So, using identity,

 \red{\rm :\longmapsto\:\boxed{\tt{ (x + a)(x + b) =  {x}^{2} + (a + b)x + ab}}}

So, here,

\red{\rm :\longmapsto\:x = 100}

\red{\rm :\longmapsto\:a = 3}

\red{\rm :\longmapsto\:b =  - 2}

So, on substituting the values, we get

 \red{\rm \:  =  \: {100}^{2} + (3 - 2)100 - 3 \times 2}

 \red{\rm \:  =  \: 10000 + 100 - 6}

 \red{\rm \:  =  \: 10000 + 94}

 \red{\rm \:  =  \: 10094}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know :-

\boxed{\tt{  {(x + y)}^{2} =  {x}^{2} + 2xy +  {y}^{2}}}

\boxed{\tt{  {(x -  y)}^{2} =  {x}^{2} -  2xy +  {y}^{2}}}

\boxed{\tt{  {(x + y)}^{3} =  {x}^{3} + 3xy(x + y) +  {y}^{3}}}

\boxed{\tt{  {(x  -  y)}^{3} =  {x}^{3} -  3xy(x - y) - {y}^{3}}}

\boxed{\tt{  {x}^{2} -  {y}^{2} = (x + y)(x - y)}}

Similar questions