(UV)
If u = x² + y², v = 2xy, then
a(x,y)
a)4(x² - y²) b)4(x2 + y2) c)2(x2 - y2) d)2(x2 + y2)
Answers
Answered by
2
Answer:
(d)
Step-by-step explanation:
d) ( xt+y+z)42=x%2+y*2+Z42t+2t+2xyt2zxt+2zy
=x42+y2+Z242+2(xytyzt+zx)
Hope it helps you
Answered by
1
Given :
u = x² - y² and v = 2xy
To find :
The value of ∂(u,v)/∂(x,y) is
(A) 4(x² + y²)
(B) - 4(x² + y²)
(C) 4(x² - y²)
(D) 0
Solution :
Step 1 of 2 :
Write down the functions
Here the given functions are
u = x² - y² and v = 2xy
Step 2 of 2 :
Find the value of ∂(u,v)/∂(x,y)
Hence the correct option is (A) 4(x² + y²)
Correct question :
If u = x² - y² and v = 2xy then the value of ∂(u,v)/∂(x,y) is
(A) 4(x² + y²) (B) - 4(x² + y²) (C) 4(x2 - y²) (D) 0
Similar questions