Math, asked by kshamta1010, 6 days ago

(v) 5pq(p2 - q2) / 2p(p+q)
question is 5 pq bracket me p ka square +q ka square divided by 2 p ( p+ q)​

Answers

Answered by mathdude500
20

Given Question :- Simplify

\rm \: \dfrac{5pq( {p}^{2}  -  {q}^{2})}{2p(p + q)}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \: \dfrac{5pq( {p}^{2}  -  {q}^{2})}{2p(p + q)}  \\

Step :- 1 Cancel out p

\rm \: =  \:  \dfrac{5 \cancel{p}q( {p}^{2}  -  {q}^{2})}{2\cancel{p}(p + q)}  \\

So, we get now

\rm \: =  \:  \dfrac{5q( {p}^{2}  -  {q}^{2})}{2(p + q)}  \\

Step :- 2

We know,

\boxed{ \rm{ \: {x}^{2} -  {y}^{2} = (x + y)(x - y) \: }} \\

So, using this identity, we get

\rm \: =  \:  \dfrac{5q(p + q)(p - q)}{2(p + q)}  \\

\rm \: =  \:  \dfrac{5q \: \cancel{(p + q)} \: (p - q)}{2 \: \cancel{(p + q)} \: }  \\

\rm \:  =  \: \dfrac{5}{2} \: q \: (p - q) \\

Hence,

\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{5pq( {p}^{2}  -  {q}^{2})}{2p(p + q)}  =  \frac{5}{2}q(p - q) \:  \: }}  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: identities}}}} \\ \\ \bigstar \: \bf{ {(x + y)}^{2} =  {x}^{2}  + 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {(x - y)}^{2}  =  {x}^{2} - 2xy +  {y}^{2} }\:\\ \\ \bigstar \: \bf{ {x}^{2} -  {y}^{2} = (x + y)(x - y)}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  -  {(x - y)}^{2}  = 4xy}\:\\ \\ \bigstar \: \bf{ {(x + y)}^{2}  +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}\: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Answered by StarFighter
37

Answer:

Question :-

\leadsto \sf \dfrac{5pq(p^2 - q^2)}{2p(p + q)}\\

Solution :-

Given :

\dashrightarrow \bf \dfrac{5pq(p^2 - q^2)}{2p(p + q)}\\

First, we have to break ( - ) by using algebraic identities :

As we know that :

\bigstar \: \: \sf\boxed{\bold{\pink{a^2 - b^2 =\: (a + b)(a - b)}}}\: \: \: \bigstar\\

So, by taking help with this algebraic identities we get,

\longrightarrow \sf \dfrac{5pq(p^2 - q^2)}{2p(p + q)}

\dashrightarrow \sf \dfrac{5pq(p + q)(p - q)}{2p(p + q)}

Second, by cancel (p + q) :

\dashrightarrow \sf \dfrac{5pq\cancel{(p + q)}(p - q)}{2p\cancel{(p + q)}}

\dashrightarrow \sf \dfrac{5pq(p - q)}{2p}

Third, again by cancel p :

\dashrightarrow \sf \dfrac{5\cancel{p}q(p - q)}{2\cancel{p}}

\dashrightarrow \sf \dfrac{5q(p - q)}{2}

\dashrightarrow \sf \dfrac{5 \times q \times (p - q)}{2}

\dashrightarrow \sf \dfrac{5}{2} \times q \times (p - q)\\

\dashrightarrow \sf\bold{\red{\dfrac{5}{2}q(p - q)}}\\

\sf\bold{\underline{\purple{\therefore\: The\: value\: of\: \dfrac{5pq(p^2 - q^2)}{2p(p + q)}\: is\: \dfrac{5}{2}q(p - q)\: .}}}\\

Similar questions