Math, asked by tenukaur2005, 10 hours ago

v= √8πGρ/3 prove answer this ques jaldi please​

Answers

Answered by MysticSohamS
1

Answer:

your solution is as follows

pls mark it as brainliest

Step-by-step explanation:

to \: prove \: that :  \\ escape \: velocity \: of \: earth =  \\   R. \sqrt{ \frac{8G\piρ}{3} }  \\  \\ we \: know \: that \\ earth \: is \: an \: oblate \: spheroid \\ therefore \: so \:  \\ volume \: of \: earth = volume \: of \: sphere \\  v=  \frac{4}{ 3} \pi.R {}^{3}  \:  \:  \:  \: (1) \\  \\ we \: know \: that \\ density =  \frac{ mass}{volume}  \\  \\ ρ =  \frac{M}{v}  \\  \\ M = ρv \\ M =  \frac{4}{3} \pi.R {}^{3} .ρ \:  \:  \:  \:  \:  \:  \:  \: from \: (1)

we \: have \\ escape \: velocity \: of \: earth \:  =  \:  \sqrt{ \frac{2GM}{R} }  \\  \\  =  \sqrt{ \frac{2G}{R}  \times M  }  \\  \\  =  \sqrt{ \frac{2G}{R}  \times  \frac{4}{3}\pi.R  {}^{3} }  \\  \\  =   \sqrt{ \frac{8Gρ.\pi.R {}^{2} }{3} }  \\  \\  = R . \sqrt{ \frac{8G\pi.ρ}{3} }

Similar questions