Physics, asked by chetan342003, 1 year ago

v) Calculate the mass of the Earth if acceleration due to gravity g = 9.81 m/s? and
radius of Earth is 6.37 x 10 m.(G-6.67 x 10-11 Nm²/kg)​

Answers

Answered by Anonymous
22

Answer:

\large\bold\red{Mass\:of\:Earth=6×{10}^{24}\:Kg}

Explanation:

Given,

Acceleration due to gravity,

g = 9.81=9.8 \: m {s}^{ - 2}

Radius of earth,

R = 6.37 \times  {10}^{6} \:  m \\  \\   =  > R= 6.4 \times  {10}^{6}  \: m

and,

Universal Gravitational Constant,

G = 6.67 \times  {10}^{ - 11} \:  n {m}^{2} {kg}^{ - 2}

Now,

Let ,

the mass of Earth be 'M'

But,

We know that,

\large\bold{g =  \frac{GM}{ {R}^{2} }}

Therefore,

pUtting the values,

we get,

 =  > 9.8 =  \frac{6.67 \times  {10}^{ - 11}  \times m}{ {(6.4 \times  {10}^{6}) }^{2} }  \\  \\  =  > m =  \frac{9.8 \times  {(6.4)}^{2} \times  {10}^{12}  }{6.67 \times  {10}^{ - 11} } \\  \\  =  > m =  \frac{9.8 \times  {(6.4)}^{2}  \times  {10}^{(12 + 11)} }{6.67}   \\  \\  =  > m =  \frac{9.8 \times  {(6.4)}^{2}  \times  {10}^{23} }{6.67}

After simplification,

we get,

\bold{M= 6 \times  {10}^{24}  \: Kg}

Similar questions