Math, asked by dattasoham, 2 months ago

v) cos8 A - sin8 A = (1 - 2 sin2A cos2 A)(1-2 sin2A)​ please give a proper ans

Answers

Answered by mathdude500
1

Appropriate Question:-

Prove that

 \sf \:  {cos}^{8}A -  {sin}^{8}A = (1 - 2 {sin}^{2}A {cos}^{2}A)(1 - 2 {sin}^{2}A)

 \green{\large\underline{\bf{Solution-}}}

Consider,

\bf :\longmapsto\: {cos}^{8}A -  {sin}^{8} A

 \rm \:  \:  =  \:  \:  {\bigg( {cos}^{4}A  \bigg) }^{2}  -  {\bigg( {sin}^{4}A\bigg) }^{2}

 \rm \:  \:  =  \:  \: ( {cos}^{4}A -  {sin}^{4}A)( {cos}^{4}A +  {sin}^{4}A)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \red{\bigg\{ \bf\because  \:  {x}^{2} -  {y}^{2} = (x + y)(x - y)\bigg\}}

 \rm \:  \:  =  \:  \: \bigg( {( {cos}^{2}A)  }^{2}  -  {( {sin}^{2} A)}^{2}  \bigg) \bigg( {( {cos}^{2}A) }^{2} +  {( {sin}^{2}A)}^{2}   \bigg)

\rm=\: ( {cos}^{2}A +  {sin}^{2}A)( {cos}^{2}A -  {sin}^{2}A)\bigg( {( {cos}^{2}A +  {sin}^{2}A) }^{2} - 2 {sin}^{2}A {cos}^{2}A \bigg)

 \:  \red{\bigg\{ \bf\because  \:  {x}^{2} -  {y}^{2} = (x + y)(x - y) \: and \:  {x}^{2} +  {y}^{2} =  {(x + y)}^{2} - 2xy\bigg\}}

 \rm \:  \:  =  \:  \: (1)( {cos}^{2}A -  {sin}^{2}A)( {1}^{2}  - 2 {sin}^{2}A {cos}^{2}A)

 \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \:  \:  \:   \:  \: \red{\bigg\{\because \:  {sin}^{2} x +  {cos}^{2}x = 1  \bigg\}}

 \rm \:  \:  =  \:  \: ( 1 - {sin}^{2}A -  {sin}^{2}A)(1 - 2 {sin}^{2}A {cos}^{2}A)

 \:  \:  \:  \:  \:  \:  \:  \:  \bf \:  \:  \:  \:   \:  \: \red{\bigg\{\because \:  {sin}^{2} x +  {cos}^{2}x = 1  \bigg\}}

 \rm \:  \:  =  \:  \: ( 1 - 2{sin}^{2}A)(1 - 2 {sin}^{2}A {cos}^{2}A)

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions