(v)If √(9+√48 - √32 - √24 )= √a-√b+2, where a,b € N, then find the value of a +b.
Answers
Answered by
0
If √(9+√48 - √32 - √24 )= √a-√b+2, where a,b € N, then find the value of a+b
Let's first simplify a little bit. Start from the last sq root: 13+sqrt(48))))
13+√48=12+4√3+1= (2√3)2+2 *1*2*√3+12=(2*√3+1)2
Now
√5-(13+√48)=√5-(2*√3+1)=√4-2*√3)=√12-2*1*√3+(√3)2=
=√(1-√3)2=(1-√3),
Now the last (basically the first)
2(√3+1-√3) = 2(√(4-√3))= √16-4√3= √12-4√3+4 =
√(2√3)2-2*2*√3+22)=√(2√3-2)2=2√3-2.
So far what we have is
2(sqrt(3+sqrt(5-sqrt(13+sqrt(48))))=2(2√3-2)=2(√3-1)
Therefore
2(√3-1)=√a+√b (*)
Square both sides of (*)
4(4-2√3)=a+b-2√(ab)
Since a and b are natural numbers, I think you can figure our what should be a+b.
Answered by
0
Step-by-step explanation:
√32 + √48 /√8 + √12
√4*√8 + √4*√12/√8+√12
(√4*√8=√32,√4 * √12 = √48)
2√8 + 2√12/√8+√12 ( √4=2 )
2(√8+√12)/1(√8+√12) ( 2 taken common and 1 taken common)
ans = 2/1= 2 (√8+√12 cancelled out)
Similar questions