Physics, asked by gaikwadshital510, 1 month ago

v) Obtain derivatives of the following
functions:
(i) x sin x
(ii) x4+cos x
(iii) x/sinx


gaikwadshital510: hi

Answers

Answered by Anonymous
19

Question :

Find the Derivatives of the following:

  • x sin x
  • x⁴ + cos x
  • x / sin x

Formula's Used :

Genral Formula

1)\sf\:\frac{d(x {}^{n} )}{dx}  = nx {}^{n - 1}

2)\sf\:\frac{d(constant)}{dx}  = 0

3)\sf\dfrac{d(\sin\:x)}{dx}=\cos\:x

\sf4)\dfrac{d(\cos\:x)}{dx}=-\sin\:x

Quotient rule

Let u = f(x) and v = g(x)

Then ,

\sf\dfrac{d}{dx}(\dfrac{u}{v})=\dfrac{v\times\frac{du}{dx}-u\times\frac{dv}{dx}}{(v)^2}

Chain rule

Let y=f(t) ,t = g(u) and u =m(x) ,then

\sf\:\dfrac{dy}{dx}  =  \dfrac{dy}{dt}  \times  \dfrac{dt}{du}  \times  \dfrac{du}{dx}

Product Rule

Let u = f(x) and v = g(x) , then

\sf\dfrac{d(uv)}{dx}=u\times\dfrac{dv}{dx}+v\times\dfrac{du}{dx}

Solution :

We have, to find Derivatives of the following functions :

1) Let y = x sin x

Now Differentiate with respect to x , by product rule

\sf\dfrac{dy}{dx}=x\times\dfrac{d(\sin\:x)}{dx}+\sin\:x\:\times\dfrac{dx}{dx}

\sf\implies\dfrac{dy}{dx}=x\cos\:x+\sin\:x

2) y = x⁴ + cos x

Now , Differentiate with respect to x , then

\sf\implies\dfrac{dy}{dx}=\dfrac{d(x^4)}{dx}+\dfrac{d(\cos\:x)}{dx}

\sf\implies\dfrac{dy}{dx}=4x^3-\sin\:x

3) \sf\:y=\dfrac{x}{\sin\:x}

Now , Differentiate with respect to x , by quotient rule , then

\sf\implies\dfrac{dy}{dx}=\dfrac{\sin\:x\:\times\frac{dx}{dx}-x\:\times\frac{d(\sin\:x)}{dx}}{(\sin\:x)^2}

\sf\implies\dfrac{dy}{dx}=\dfrac{\sin\:x\:\times1-x\:\times\:cos\:x}{sin^2x}

\sf\implies\dfrac{dy}{dx}=\dfrac{\sin\:x-x\:\times\:cos\:x}{sin^2x}

Answered by DARLO20
35

\large{\bf{\pink{\underline{Use\:the\:following\:formula\::}}}} \\

1)\:\:\bf{\dfrac{d\:(x^n)}{dx}\:=\:n\:x^{n\:-\:1}\:} \\

2)\:\:\bf{\dfrac{d\:(x)}{dx}\:=\:1\:} \\

3)\:\:\bf{\dfrac{d\:(Constant)}{dx}\:=\:0\:} \\

4)\:\:\bf{\dfrac{d\:(sin\:x)}{dx}\:=\:cos\:x} \\

5)\:\:\bf{\dfrac{d\:(cos\:x)}{dx}\:=\:-\:sin\:x\:} \\

Pʀ Rʟ ;-

\red\bigstar\:\:{\underline{\blue{\boxed{\bf{\purple{\dfrac{d\:\Big(f\:(x)\:g\:(x)\Big)}{dx}\:=\:f\:(x)\:\dfrac{d\Big(g\:(x)\Big)}{dx}\:+\:g\:(x)\:\dfrac{d\Big(f\:(x)\Big)}{dx}\:}}}}}} \\

Qɪɴ Rʟ ;-

\orange\bigstar\:\:{\underline{\green{\boxed{\bf{\green{\dfrac{d}{dx}\:\Big(\dfrac{f\:(x)}{g\:(x)}\Big)\:=\:\dfrac{g\:(x)\:\frac{d\Big(f\:(x)\Big)}{dx}\:-\:f\:(x)\:\frac{d\Big(g\:(x)\Big)}{dx}}{\Big(g\:(x)\Big)^2}\:}}}}}} \\

━─━─━─━─━─━─━─━─━─━─━─━─━─━─━

x sinx

Differentiate w.r.t x, we get

:\implies\:\:\bf{\dfrac{x\:sin\:x}{dx}} \\

By using product rule,

:\implies\:\:\bf{x\times{\dfrac{d\Big(sin\:x\Big)}{dx}}\:+\:sin\:x\times{\dfrac{d\:(x)}{dx}}\:} \\ \\

:\implies\:\:\bf{(x\times{cos\:x})\:+\:(sin\:x\times{1})\:} \\ \\

:\implies\:\:\bf\blue{x\:cos\:x\:+\:sin\:x\:} \\ \\

x⁴ + cos x

Differentiate w.r.t x, we get

:\implies\:\:\bf{\dfrac{x^4\:+\:cos\:x}{dx}} \\ \\

:\implies\:\:\bf{\dfrac{x^4}{dx}\:+\:\dfrac{cos\:x}{dx}} \\ \\

:\implies\:\:\bf{4\:x^{(4\:-\:1)}\:+\:(-\:sin\:x)} \\ \\

:\implies\:\:\bf\orange{4\:x^3\:-\:sin\:x} \\ \\

\bf{\dfrac{x}{sin\:x}} \\

Differentiate w.r.t x, we get

:\implies\:\:\bf{\dfrac{d\:\Big(\frac{x}{sin\:x}\Big)}{dx}} \\

By using Quotient rule,

:\implies\:\:\bf{\dfrac{sin\:x\:\frac{d\:(x)}{dx}\:-\:x\:\frac{d(sin\:x)}{dx}}{(sin\:x)^2}\:} \\ \\

:\implies\:\:\bf{\dfrac{(sinx\times{1})\:-\:(x\times{cos\:x})}{sin^2x}\:} \\ \\

:\implies\:\:\bf{\dfrac{sin\:x\:-\:x\:cos\:x}{sin^2x}\:} \\ \\

:\implies\:\:\bf{\dfrac{sin\:x}{sin^2x}\:-\:\dfrac{x\:cos\:x}{sin^2x}\:} \\ \\

:\implies\:\:\bf{\dfrac{1}{sin\:x}\:-\:\Big(x\times{\dfrac{cos\:x}{sin\:x}}\times{\dfrac{1}{sin\:x}}\Big)\:} \\ \\

:\implies\:\:\bf{cosec\:x\:-\:x\:.\:{cot\:x}\:.\:{cosec\:x}\:} \\ \\

:\implies\:\:\bf\green{cosec\:x\:\Big(1\:-\:x\:{cot\:x}\Big)\:} \\


Anushka786: Nice answer!! keep going!!
Anushka786: :-)
Anonymous: Nice !
Similar questions