Math, asked by amitsingh467, 3 months ago

vєriƒy ρ(-1,2,1) q(1,-2,5) r(4.-7.8) ɑท∂ s (2.-3.4) ɑrє τнє vєrτicєs σƒ ɑ ρɑrɑℓℓєℓσgrɑм​

Answers

Answered by BrainlyTwinklingstar
2

Given that,

P = (-1,2,1)

Q = (1,-2,5)

R = (4,-7,8)

S = (2,-3,4)

Assume PQ, RS, QR and PS are the sides of the parallelogram.

Now using distance formula,

\dashrightarrow\sf PQ = \sqrt{(x_2 -x_1)^2 + (y_2-y_1)^2 + (z_2 - z_1)^2} \\

\dashrightarrow\sf PQ = \sqrt{(1 - ( - 1))^2 + ( - 2 - 2)^2 + (5 - 1)^2} \\

\dashrightarrow\sf PQ = \sqrt{4 + 16 + 16}

\dashrightarrow\sf PQ = \sqrt{36}

\dashrightarrow\boxed{\sf PQ =6}

Similarly,

\dashrightarrow\sf QR  = \sqrt{(x_2 -x_1)^2 + (y_2-y_1)^2 + (z_2 - z_1)^2} \\

 \dashrightarrow\sf QR  = \sqrt{(4 - 1)^2 + ( - 7 - ( - 2))^2 + (8 - 5)^2} \\

 \dashrightarrow\sf QR  = \sqrt{9 + 25 + 9} \\

 \dashrightarrow\boxed {\sf QR  = \sqrt{43}} \\

 \:

 \dashrightarrow\sf RS = \sqrt{(x_2 -x_1)^2 + (y_2-y_1)^2 + (z_2 - z_1)^2} \\

 \dashrightarrow\sf RS = \sqrt{(2 - 4)^2 + ( - 3 - ( - 7))^2 + (4 - 8)^2} \\

 \dashrightarrow\sf RS = \sqrt{4 + 16 + 16} \\

 \dashrightarrow\sf RS = \sqrt{36} \\

 \dashrightarrow\boxed{\sf RS = 6}

 \:

 \dashrightarrow\sf PS = \sqrt{(x_2 -x_1)^2 + (y_2-y_1)^2 + (z_2 - z_1)^2} \\

 \dashrightarrow\sf PS = \sqrt{(2 - ( - 1))^2 + ( - 3 - 2)^2 + (4 - 1)^2} \\

 \dashrightarrow\sf PS = \sqrt{9 + 25 + 9} \\

 \dashrightarrow\boxed{ \sf PS = \sqrt{43}} \\

Here, PQ = RS and QR = PS Opposite side are equal so, the given points are vertices of the parallelogram.

Answered by Toxicbanda
2

Answer:

  • Given points are vertices of a parallelogram.

Step-by-step explanation:

Given:

  • Point p = (-1, 2, 1)
  • Point q = (1, -2, 5)
  • Point r = (4, -7, 8)
  • Point s = (2, -3, 4)

To Prove:

  • Following points are vertices of parallelogram.

Now, we know about distance formula.

\implies{\tt{PQ = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}}}

Now, put the Values in the formula,

\implies{\tt{PQ = \sqrt{(1+1)^{2}+(-2-2)^{2}+(5-1)^{2}}}}

\implies{\tt{PQ = \sqrt{(2)^{2}+(-4)^{2}+(4)^{2}}}}

\implies{\tt{PQ = \sqrt{4+16+16}}}

\implies{\tt{PQ = \sqrt{36}}}

\implies{\boxed{\tt{PQ =6\;units}}}

Again by distance formula,

\implies{\tt{QR = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}}}

Now, put the Values in the formula,

\implies{\tt{QR = \sqrt{(4-1)^{2}+(-7+2)^{2}+(8-5)^{2}}}}

\implies{\tt{QR = \sqrt{(3)^{2}+(-5)^{2}+(3)^{2}}}}

\implies{\tt{QR = \sqrt{9+25+9}}}

\implies{\boxed{\tt{QR = \sqrt{43}\;units}}}

Again by distance formula,

\implies{\tt{RS = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}}}

Now, put the Values in the formula,

\implies{\tt{RS = \sqrt{(2-4)^{2}+(-3+7)^{2}+(4-8)^{2}}}}

\implies{\tt{RS = \sqrt{(-2)^{2}+(4)^{2}+(-4)^{2}}}}

\implies{\tt{RS = \sqrt{4+16+16}}}

\implies{\tt{RS = \sqrt{36}}}

\implies{\boxed{\tt{RS =6\;units}}}

Again by distance formula,

\implies{\tt{SP = \sqrt{(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}}}

Now, put the Values in the formula,

\implies{\tt{SP = \sqrt{(-1-2)^{2}+(2+3)^{2}+(1-4)^{2}}}}

\implies{\tt{SP = \sqrt{(-3)^{2}+(5)^{2}+(-3)^{2}}}}

\implies{\tt{SP = \sqrt{9+25+9}}}

\implies{\boxed{\tt{SP = \sqrt{43}\;units}}}

Now, we see that

\implies{\tt{PQ = RS = 6\;units}}

\implies{\tt{QR = SP = \sqrt{43}\;units}}

We, know that opposite sides of parallelogram are equal. So PQRS is a parallelogram.

∴ Given points are vertices of a parallelogram.

Similar questions