(v) root2x+root3 y=0
root3x- root8 y = 0
Answers
Answered by
1
Answer:
The value of x and y is zero.
Step-by-step explanation:
Given : Equations \sqrt{2}x+\sqrt{3}y=02x+3y=0 and \sqrt{3}x-\sqrt{8}y=03x−8y=0
To find : Solve the equations?
Solution :
\sqrt{2}x+\sqrt{3}y=02x+3y=0 ......(1)
\sqrt{3}x-\sqrt{8}y=03x−8y=0 ........(2)
Multiply equation (1) by \sqrt{3}3 and equation (2) by \sqrt{2}2
\sqrt{6}x+\sqrt{9}y=06x+9y=0 ......(3)
\sqrt{6}x-\sqrt{16}y=06x−16y=0 ........(4)
Subtract equation (3) and (4),
\sqrt{6}x+\sqrt{9}y-\sqrt{6}x+\sqrt{16}y=06x+9y−6x+16y=0
3y+4y=03y+4y=0
7y=07y=0
y=0y=0
Substitute in equation (1),
\sqrt{2}x+\sqrt{3}(0)=02x+3(0)=0
\sqrt{2}x=02x=0
x=0x=0
Therefore, The value of x and y is zero
Similar questions