V)
tan(Q + B) = a + b 47 tan(Q - B) = a - b 03 065
(palis (3 ataną - btan B = a 2 – b2
Answers
Answered by
1
Step-by-step explanation:
(1+tan15°)1−tan15°)(1+tan15°)1−tan15°)
=
we know that
Tan(x2=1−cosxsinxTan(x2=1−cosxsinx
=>
tan15°=1−cos30°sin30°tan15°=1−cos30°sin30°
Therefore :
(1+1−cos30°sin30°)1−1−cos30°sin30°)(1+1−cos30°sin30°)1−1−cos30°sin30°)
=> =
(sin30°+1−cos30°)(sin30°−1+cos30°)(sin30°+1−cos30°)(sin30°−1+cos30°)
But we know that
cos30°=3√2cos30°=32
and
sin30°=12sin30°=12
=>
(sin30°+1−cos30°)(sin30°−1+cos30°)(sin30°+1−cos30°)(sin30°−1+cos30°)
=
(12+1−3√2)(12−1+3√2)(12+1−32)(12−1+32)
=
(1+2−3√)(1−2+3√)(1+2−3)(1−2+3)
=
(3−3√)(−1+3√)(3−3)(−1+3)
=
(3−3√)(1+3√)(−1+3√)(1+3√)(3−3)(1+3)(−1+3)(1+3)
=
(3+3.3√−3√−3)(3−1)(3+3.3−3−3)(3−1)
=
(2.3√2(2.32
=
3–√3
Similar questions