Math, asked by mohitkumarm5379, 8 hours ago

v=(x^2+y^2+z^2)6-1/2, prove that d^2v/dx^2+d^2v/dy^2+d^2v/dz^2=0

Answers

Answered by roy278ashok
0

Answer:

If u=log

(x

2

+y

2

+z

2

)

then prove that (x

2

+y

2

+z

2

)(

dx

2

d

2

u

+

dy

2

d

2

u

+

dz

2

d

2

u

)=1.

share

Share

Answer

u=log

x

2

+y

2

+z

2

u=log(x

2

+y

2

+z

2

)

2

1

u=

2

1

log(x

2

+y

2

+z

2

)

⇒2u=log(x

2

+y

2

+z

2

)

Differentiating w.r.t. 'x' on both sides, we get

2

dx

du

=

x

2

+y

2

+z

2

1

⋅(2x)

dx

du

=

x

2

+y

2

+z

2

x

dx

2

d

2

u

=

(x

2

+y

2

+z

2

)

2

(x

2

+y

2

+z

2

)(

dx

d

(x))−x(

dx

d

(x

2

+y

2

+z

2

))

dx

2

d

2

u

=

(x

2

+y

2

+z

2

)

x

2

+y

2

+z

2

−x(2x)

=

(x

2

+y

2

+z

2

)

2

−x

2

+y

2

+z

2

Similarly,

dy

2

d

2

u

=

(x

2

+y

2

+z

2

)

2

−y

2

+x

2

+z

2

dz

2

d

2

u

=

(x

2

+y

2

+z

2

)

2

−z

2

+x

2

+y

2

(x

2

+y

2

+z

2

)(

dx

2

d

2

u

+

dy

2

d

2

u

+

dz

2

d

2

u

)=(x

2

+y

2

+z

2

)[

(x

2

+y

2

+z

2

)

2

x

2

+y

2

+z

2

]

=

(x

2

+y

2

+z

2

)

2

(x

2

+y

2

+z

2

)

=1.

Similar questions