Math, asked by waghmareprerna320, 9 months ago

व्हिच ऑफ द फॉलोइंग कलेक्शन इन सेट गुड बॉयज इन योर क्लास डिफिकल्ट एग्जांपल्स इन योर टेक्सबुक प्राइम नंबर्स बिटवीन 1200 इंटेलीजेंट पीपल इन योर साइट ​

Answers

Answered by nverma8183
0

Answer:

hiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Answered by Anonymous
0

\blue{\bold{\underline{\underline{Answer:}}}}

Answer:

\green{\tt{\therefore{Distance\:travelled=625\:m}}}∴Distancetravelled=625m

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

Step−by−stepexplanation:

\begin{gathered}\green{\underline \bold{Given :}} \\ \tt: \implies Initial \: speed(u) = 90 \: km/h \\ \\ \tt: \implies Acceleration(a) = - 0.5 \: {m/s}^{2} \\ \\ \red{\underline \bold{To \: Find :}} \\ \tt: \implies Distance \: travel(s) = ?\end{gathered}

Given:

:⟹Initialspeed(u)=90km/h

:⟹Acceleration(a)=−0.5m/s

2

ToFind:

:⟹Distancetravel(s)=?

• According to given question :

\begin{gathered}\tt \circ \: Initial \: speed = 90 \times \frac{5}{18} = 25 \: m/s \\ \\ \tt \circ \: Final \: speed = 0 \: m/s\\ \\ \bold{As \: we \: know \: that} \\ \tt: \implies {v}^{2} = {u}^{2} + 2as \\ \\ \tt: \implies {0}^{2} = {25}^{2} + 2 \times - 0.5 \times s \\ \\ \tt: \implies 0 = 625 - s \\ \\ \tt: \implies - 625 = - s \\ \\ \green{\tt: \implies s = 625 \: m} \\ \\ \green{\tt \therefore Distance \: travelled \: by \: train \: is \: 625 \: m \: after \: applying \: brake}\end{gathered}

∘Initialspeed=90×

18

5

=25m/s

∘Finalspeed=0m/s

Asweknowthat

:⟹v

2

=u

2

+2as

:⟹0

2

=25

2

+2×−0.5×s

:⟹0=625−s

:⟹−625=−s

:⟹s=625m

∴Distancetravelledbytrainis625mafterapplyingbrake

\begin{gathered}\blue{\huge {\boxed{ \tt Some \: related \: formula}}} \\ \\ \orange{ \tt \circ \: First \: eqn \: of \: motion \to \: v = u + at} \\ \\ \orange{ \tt \circ \: Second\: eqn \: of \: motion \to \: s= u t+ \frac{1}{2} {at}^{2} } \\ \\ \orange{ \tt \circ \: Time \: of \: flight \to \: t= \frac{ 2u \: {sin} \: \theta }{g} } \\ \\ \orange{ \tt \circ \: Range \to \: R = \frac{ {u}^{2} sin \: 2 \theta}{g} } \\ \\ \orange{ \tt \circ \: Maximum \: height \to \: H_{max}= \frac{ {u}^{2} {sin}^{2} \: \theta}{2g} }\end{gathered}

Somerelatedformula

∘Firsteqnofmotion→v=u+at

∘Secondeqnofmotion→s=ut+

2

1

at

2

∘Timeofflight→t=

g

2usinθ

∘Range→R=

g

u

2

sin2θ

∘Maximumheight→H

max

=

2g

u

2

sin

2

θ

Similar questions