Math, asked by PragyaTbia, 1 year ago

विस्तार करा:  \bigg \lgroup 1-\frac{1}{a} \bigg \rgroup^3

Answers

Answered by hukam0685
0

विस्तार सूत्र:

( {x-y)}^{3} = {x}^{3} - {y}^{3} - 3 {x}^{2} y + 3x {y}^{2} \\ \\
विस्तार करा: \bigg \lgroup 1-\frac{1}{a} \bigg \rgroup^3

x = 1\\ \\ y= \frac{1}{a} \\ \\
\bigg( { 1 - \frac{1}{a} \bigg)}^{3} = {1}^{3} - \bigg({ \frac{1}{a} \bigg)}^{3} - 3 {(1)}^{2} \bigg( \frac{1}{a}\bigg) + 3(1) {\bigg( \frac{1}{a}\bigg) }^{2} \\ \\ = 1 - \frac{1}{ {a}^{3} } - \frac{3}{a} + \frac{3}{a^{2}} \\ \\
विस्तार:

 \bigg \lgroup 1-\frac{1}{a} \bigg \rgroup^3 =1 - \frac{1}{ {a}^{3} } - \frac{3}{a} + \frac{3}{a^{2}} \\ \\\\\\
Similar questions