Business Studies, asked by rajeshdigitalphoto22, 2 months ago

व्यवसाय विचार की पहचान की प्रक्रिया में निहित विभिन्न चरणों का संक्षिप्त विवेचन कीजिए।​

Answers

Answered by 2020010545
0

Answer:

व्यवसाय प्रक्रिया प्रबंधन गतिविधियों को पांच वर्गों में रखा जा सकता है: डिज़ाइन, मॉडलिंग, निष्पादन, निगरानी और अनुकूलन.

डिज़ाइन प्रक्रिया डिज़ाइन में प्रचलित प्रक्रियाओं की पहचान और "भावी" प्रक्रियाओं की डिज़ाइन दोनों शामिल हैं। ...

मॉडलिंग ...

कार्यान्वयन ...

निगरानी ...

अनुकूलन ...

BPM प्रौद्योगिकी

Answered by XBarryX
0

Answer:

《¤¤¤¤¤¤¤¤¤¤¤¤¤¤》

▪Given :-

\begin{gathered} A = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}A=[cosθ−sinθsinθcosθ]

And

B=A+A^4B=A+A4

___________________________

▪To Calculate :-

det(B)

___________________________

▪Solution :-

\begin{gathered} A = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}\end{gathered}A=[cosθ−sinθsinθcosθ]

So,

\begin{gathered} \sf A {}^{2} = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix} \\ \\ = \small \begin{bmatrix} \sf cos {}^{2} \theta - {sin}^{2} \theta& \sf sin \theta cos \theta + sin \theta cos \theta \\ \sf - sin \theta cos \theta - sin \theta cos \theta& \sf - {sin}^{2} \theta + cos {}^{2} \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos 2\theta& \sf sin 2\theta \\ \sf - sin2 \theta& \sf cos2 \theta \end{bmatrix} \end{gathered}A2=[cosθ−sinθsinθcosθ]=[cosθ−sinθsinθcosθ][cosθ−sinθsinθcosθ][cosθ−sinθsinθcosθ]=[cos2θ−sin2θ−sinθcosθ−sinθcosθsinθcosθ+sinθcosθ−sin2θ+cos2θ]=[cos2θ−sin2θsin2θcos2θ]

Similarly,

\begin{gathered}A {}^{4} = \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\ \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix}\end{gathered}A4=[cos4θ−sin4θsin4θcos4θ]

As,

Given Matrix

B = A + A {}^{4}B=A+A4

So,

\begin{gathered} \sf B= \begin{bmatrix} \sf cos \theta& \sf sin \theta \\ \sf - sin \theta& \sf cos \theta \end{bmatrix}+ \begin{bmatrix} \sf cos 4\theta& \sf sin 4\theta \\ \sf - sin 4\theta& \sf cos4 \theta \end{bmatrix} \\ \\ = \begin{bmatrix} \sf cos \theta + cos 4\theta& \sf sin \theta + sin 4\theta \\ \sf -( sin \theta + sin 4\theta)& \sf cos \theta + cos4 \theta \end{bmatrix} \end{gathered}B=[cosθ−sinθsinθcosθ]+[cos4θ−sin4θsin4θcos4θ]=[cosθ+cos4θ−(sinθ+sin4θ)sinθ+sin4θcosθ+cos4θ]

\begin{gathered} \bf \small\therefore det(B) = {(cos \theta + cos4 \theta)}^{2} + {(sin \theta + sin4 \theta)}^{2} \\ \\ = \sf {cos}^{2} \theta + {cos}^{2} 4\theta + 2 cos\theta cos4 \theta \\ + {sin}^{2} \theta \sf+ {sin}^{2} 4\theta + 2 sin\theta sin4 \theta \\ \\ = \sf 2 + 2cos(3 \theta)\end{gathered}∴det(B)=(cosθ+cos4θ)2+(sinθ+sin4θ)2=cos2θ+cos24θ+2cosθcos4θ+sin2θ+sin24θ+2sinθsin4θ=2+2cos(3θ)

\begin{gathered} \sf So, at \: \theta = \frac{\pi}{5} \\ \\ \sf det(B) = 2 + 2cos \frac{3\pi}{5} \\ \\ = \sf4 {cos}^{2} ( \frac{3\pi}{10} ) \\ \\ = \sf4(\frac{ \sqrt{10 - 2 \sqrt{5} } }{4} \: {)}^{2} \\ \\\large \colorbox{lime}{ \underline{\boxed{ \color{magenta}\bf det(B)= \frac{1}{4} (10 - 2 \sqrt{5} \: )}}}\end{gathered}So,atθ=5πdet(B)=2+2cos53π=4cos2(103π)=4(410−25)2 det(B)=4

Similar questions