Math, asked by harshwaghmare5581, 10 hours ago

Value is cos theta + sin theta bracket square + cos theta minus sin theta (square

Answers

Answered by anindyaadhikari13
7

Solution:

We have to simplify the given expression.

= (cos θ + sin θ)² + (cos θ - sin θ)²

We know that:

→ (a + b)² = a² + 2ab + b²

→ (a - b)² = a² - 2ab + b²

Therefore the expression becomes:

= cos²θ + sin²θ + 2 sinθ cosθ + cos²θ + sin²θ - 2 sinθ cosθ

= 2(cos²θ + sin²θ)

= 2 × 1 [As cos²θ + sin²θ = 1]

= 2

★ Which is our required answer.

Learn More:

1. Relationship between sides and T-Ratios.

  • sin(x) = Height/Hypotenuse
  • cos(x) = Base/Hypotenuse
  • tan(x) = Height/Base
  • cot(x) = Base/Height
  • sec(x) = Hypotenuse/Base
  • cosec(x) = Hypotenuse/Height

2. Square formulae.

  • sin²(x) + cos²(x) = 1
  • cosec²(x) - cot²(x) = 1
  • sec²(x) - tan²(x) = 1

3. Reciprocal Relationship.

  • sin(x) = 1/cosec(x)
  • cos(x) = 1/sec(x)
  • tan(x) = 1/cot(x)

4. Cofunction identities.

  • sin(90° - x) = cos(x)
  • cos(90° - x) = sin(x)
  • cosec(90° - x) = sec(x)
  • sec(90° - x) = cosec(x)
  • tan(90° - x) = cot(x)
  • cot(90° - x) = tan(x)

5. Even odd identities.

  • sin(-x) = -sin(x)
  • cos(-x) = cos(x)
  • tan(-x) = -tan(x)
Answered by NITESH761
1

Answer:

\rm  2

Step-by-step explanation:

We have,

\rm ( \cos θ + \sin θ)^2 + ( \cos θ - \sin θ)^2

We know that,

\boxed{(a+b)^2 = a^2 +b^2 +2ab}

\boxed{(a-b)^2 = a^2 +b^2 -2ab}

\rm \cos ^2 θ + \sin ^2 θ +2 \cos θ \sin θ + \cos ^2 θ + \sin ^2 θ - 2 \cos θ \sin θ

We know that,

\boxed{ \cos ^2 θ + \sin ^2 θ =1 }

\rm 1 +2 \cos θ \sin θ + 1 - 2 \cos θ \sin θ

\rm 1 +\cancel{2 \cos θ \sin θ} + 1 - \cancel{2 \cos θ \sin θ}

\rm 1+1 = 2

\rm Hence, \: our \: answer \: is \: 2

Similar questions