value of-0. 05+5.252-0.101+
Answers
Answer:
3103 ———— = 6.20600 500
101/1000)+(1005/1000)
Final result :
3103
———— = 6.20600
500
Reformatting the input :
Changes made to your input should not affect the solution:
(1): "1.005" was replaced by "(1005/1000)". 4 more similar replacement(s)
Step by step solution :
Step 1 :
201
Simplify ———
200
Equation at the end of step 1 :
5 5252 101 201
((———+————)-————)+———
100 1000 1000 200
Step 2 :
101
Simplify ————
1000
Equation at the end of step 2 :
5 5252 101 201
((——— + ————) - ————) + ———
100 1000 1000 200
Step 3 :
1313
Simplify ————
250
Equation at the end of step 3 :
5 1313 101 201
((——— + ————) - ————) + ———
100 250 1000 200
Step 4 :
1
Simplify ——
20
Equation at the end of step 4 :
1 1313 101 201
((—— + ————) - ————) + ———
20 250 1000 200
Step 5 :
Calculating the Least Common Multiple :
5.1 Find the Least Common Multiple
The left denominator is : 20
The right denominator is : 250
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 2 1 2
5 1 3 3
Product of all
Prime Factors 20 250 500
Least Common Multiple:
500
Calculating Multipliers :
5.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 25
Right_M = L.C.M / R_Deno = 2
Making Equivalent Fractions :
5.3 Rewrite the two fractions into equivalent fractions
Two fractions are called equivalent if they have the same numeric value.
For example : 1/2 and 2/4 are equivalent, y/(y+1)2 and (y2+y)/(y+1)3 are equivalent as well.
To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.
L. Mult. • L. Num. 25
—————————————————— = ———
L.C.M 500
R. Mult. • R. Num. 1313 • 2
—————————————————— = ————————
L.C.M 500
Adding fractions that have a common denominator :
5.4 Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
25 + 1313 • 2 2651
————————————— = ————
500 500
Equation at the end of step 5 :
2651 101 201
(———— - ————) + ———
500 1000 200
Step 6 :
Calculating the Least Common Multiple :
6.1 Find the Least Common Multiple
The left denominator is : 500
The right denominator is : 1000
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 2 3 3
5 3 3 3
Product of all
Prime Factors 500 1000 1000
Least Common Multiple:
1000
Calculating Multipliers :
6.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 2
Right_M = L.C.M / R_Deno = 1
Making Equivalent Fractions :
6.3 Rewrite the two fractions into equivalent fractions
L. Mult. • L. Num. 2651 • 2
—————————————————— = ————————
L.C.M 1000
R. Mult. • R. Num. 101
—————————————————— = ————
L.C.M 1000
Adding fractions that have a common denominator :
6.4 Adding up the two equivalent fractions
2651 • 2 - (101) 5201
———————————————— = ————
1000 1000
Equation at the end of step 6 :
5201 201
———— + ———
1000 200
Step 7 :
Calculating the Least Common Multiple :
7.1 Find the Least Common Multiple
The left denominator is : 1000
The right denominator is : 200
Number of times each prime factor
appears in the factorization of:
Prime
Factor Left
Denominator Right
Denominator L.C.M = Max
{Left,Right}
2 3 3 3
5 3 2 3
Product of all
Prime Factors 1000 200 1000
Least Common Multiple:
1000
Calculating Multipliers :
7.2 Calculate multipliers for the two fractions
Denote the Least Common Multiple by L.C.M
Denote the Left Multiplier by Left_M
Denote the Right Multiplier by Right_M
Denote the Left Deniminator by L_Deno
Denote the Right Multiplier by R_Deno
Left_M = L.C.M / L_Deno = 1
Right_M = L.C.M / R_Deno = 5
Making Equivalent Fractions :
7.3 Rewrite the two fractions into equivalent fractions
L. Mult. • L. Num. 5201
—————————————————— = ————
L.C.M 1000
R. Mult. • R. Num. 201 • 5
—————————————————— = ———————
L.C.M 1000
Adding fractions that have a common denominator :
7.4 Adding up the two equivalent fractions
5201 + 201 • 5 3103
—————————————— = ————
1000 500
Final result :
3103
———— = 6.20600
500