Math, asked by jeekurusavitri12, 7 months ago

value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

Answers

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

 \sf{If \:  \:  A + B =  {45}^{ \circ} } \:  \: then

 \sf{\tan(  A + B )=  \tan {45}^{ \circ} } \:

  \displaystyle \: \implies \:  \sf{ \frac{ \tan A +  \tan B \: }{1 -  \tan A  \tan B\: } =  1 } \:

  \displaystyle \: \implies \:  \sf{  \tan A +  \tan B \:  = 1 -  \tan A  \tan B\: } \:

  \displaystyle \: \implies \:  \sf{  \tan A +  \tan B \:   +   \tan A  \tan B = 1\: } \:

  \displaystyle \: \implies \:  \sf{1 +   \tan A +  \tan B \:   +   \tan A  \tan B = 2\: } \:

  \displaystyle \: \implies \:  \sf{(1 +   \tan A) +  \tan B( \:   1+  \tan A )= 2\: } \:

  \displaystyle \: \implies \:  \sf{(1 +   \tan A) (1+  \tan B )= 2\: } \:

TO DETERMINE

  \displaystyle \:  \:  \sf{(1 +   \tan   {13}^{ \circ} ) (1+  \tan {32}^{ \circ}  ) + \:(1 +   \tan   {12}^{ \circ} ) (1+  \tan {33}^{ \circ}  ) } \:

CALCULATION

 \sf{ \:Since \: \:   {13}^{ \circ} +   {32}^{ \circ}  =   {45}^{ \circ}\: }

So by the above mentioned formula

  \displaystyle \:  \:  \sf{(1 +   \tan   {13}^{ \circ} ) (1+  \tan {32}^{ \circ}  )  = 2 } \:

 \sf{ \:Since \: \:   {12}^{ \circ} +   {33}^{ \circ}  =   {45}^{ \circ}\: }

So by the above mentioned formula

  \displaystyle \:  \:  \sf{ \:(1 +   \tan   {12}^{ \circ} ) (1+  \tan {33}^{ \circ}  )  = 2} \:

On addition

  \displaystyle \:  \:  \sf{(1 +   \tan   {13}^{ \circ} ) (1+  \tan {32}^{ \circ}  ) + \:(1 +   \tan   {12}^{ \circ} ) (1+  \tan {33}^{ \circ}  ) } \:

 = 2 + 2

 = 4

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Find the area enclosed by the curve y = x with x-axis and x= 1 using determinants

https://brainly.in/question/22949093

Similar questions