Music, asked by kaustubh982, 9 months ago

Value of 16 raise to the power log 5 having base 4

Answers

Answered by sourajeet73
20

Answer:

IF U R SATISFIED WITH THE ANS PLZ MARK ME AS BRAINLIEST

Attachments:
Answered by pulakmath007
5

\displaystyle \sf{ {16}^{ log_{4}  5 } = 25   }

Given :

The expression

\displaystyle \sf{ {16}^{ log_{4}  5 }   }

To find :

To simplify the expression

Formula :

\displaystyle \sf{   {a}^{ log_{a}  x   }    = x}

Solution :

Step 1 of 2 :

Write down the given expression

The given expression is

\displaystyle \sf{ {16}^{ log_{4}  5 }   }

Step 2 of 2 :

Simplify the given expression

\displaystyle \sf{ {16}^{ log_{4}  5 }   }

\displaystyle \sf{  = {( {4}^{2} )}^{ log_{4}  5 }   }

\displaystyle \sf{  = {4}^{ 2log_{4}  5 }   }

\displaystyle \sf{  = {4}^{ log_{4}   {5}^{2}  }   }

\displaystyle \sf{  = {4}^{ log_{4}  25  }   }

\displaystyle \sf{  =25 \:  \:  (\:  \because  \: \displaystyle \sf{   {a}^{ log_{a}  x  }  = x  } \:  \: )}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if 2log x base y=6,then the relation between x and y

https://brainly.in/question/27199002

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions