value of 2 cos 18 degree
Answers
Answer:
Let, A = 18°
Therefore, 5A = 90°
⇒ 2A + 3A = 90˚
⇒ 2A = 90˚ - 3A
Taking sine on both sides, we get
sin 2A = sin (90˚ - 3A) = cos 3A
⇒ 2 sin A cos A = 4 cos3 A - 3 cos A
⇒ 2 sin A cos A - 4 cos3 A + 3 cos A = 0
⇒ cos A (2 sin A - 4 cos2 A + 3) = 0
Dividing both sides by cos A = cos 18˚ ≠ 0, we get
⇒ 2 sin A - 4 (1 - sin2 A) + 3 = 0
⇒ 4 sin2 A + 2 sin A - 1 = 0, which is a quadratic in sin A
Therefore, sin A = −2±−4(4)(−1)√2(4)
⇒ sin A = −2±4+16√8
⇒ sin A = −2±25√8
⇒ sin A = −1±5√4
Now sin 18° is positive, as 18° lies in first quadrant.
Therefore, sin 18° = sin A = √5−14
Now cos 18° = √(1 - sin2 18°), [Taking positive value, cos 18° > 0]
⇒ cos 18° = 1−(5√−14)2−−−−−−−−−−√
⇒ cos 18° = 16−(5+1−25√)16−−−−−−−−−−√
⇒ cos 18° = 10+25√16−−−−−−√
Therefore, cos 18° = 10+25√√4
Step-by-step explanation:
please mark as brainleast please♥️♥️♥️♥️♥️ please please
Step-by-step explanation:
let 18° = A
5A = 90°
3A + 2A = 90°
2A = 90° - 3A
applying sin both side
sin2A = sin(90° - 3A)
sin2A = cos3A
2sinAcosA = 4cos^3A - 3cosA
2 sinAcosA = cosA(4cos^2A - 3)
2 sinA = 4cos^2A - 3
2sinA = 4(1-sin^2A) - 3
2sinA = 4-4sin^2A - 3
4sin^2A + 2sinA - 1 = 0
sinA = (-2 +_ √(2^2 - 4*4*(-1)))/2*4
sinA = (-2 +_ √(4+16))/8
sinA = (-2 +_ √20)/8
sinA = (-1 +√5)/4. (positive value only as A is 18°)
now
cosA = √(1-sin^2A
= √1- ((√5-1)/4)^2
= √1-(5+1-2√5)/16
= √16-6+2√5)/16
= √(10+2√5/16)
= (10+2√5)^(1/2)/4
2cosA = √10+2√5/2