Math, asked by makhil2050, 17 days ago

Value of 2a(a^3+7a-5a+4) for a =(-1) is :

Answers

Answered by sushilkumarmeerutup
0

Answer:

search-icon-header

Search for questions & chapters

search-icon-image

Class 12

>>Maths

>>Determinants

>>Inverse of a Matrix Using Adjoint

>>If A = 3 1 | - 1 2 , show that A^2 -

Question

Bookmark

If A=[

3

−1

1

2

], show that A

2

−5A+7I=0. Hence, find A

−1

.

Medium

Solution

verified

Verified by Toppr

We have, [

3

−1

1

2

]

∴A

2

=AA= [

3

−1

1

2

][

3

−1

1

2

]=[

8

−5

5

3

]

So, A

2

−5A+7I= [

8

−5

5

3

]−5[

3

−1

1

2

]+7[

1

0

0

1

]=[

8−15+7

−5+5+0

5−5+0

3−10+7

]=[

0

0

0

0

]=O

Now, A

2

−5A+7I=O

⇒A

−1

(A

2

−5A+7I)=A

−1

=O [Multiplying throughout by A

−1

]

⇒A

−1

A

2

−5A

−1

A+7A

−1

I=O

⇒A−5I+7A

−1

=O

⇒7A

−1

=5I−A

7A

−1

= [

5

0

0

5

]−[

3

−1

1

2

]=[

2

1

−1

3

]

⇒A

−1

=

7

1

[

2

1

−1

3

]

Answered by Aadith1234
0

Answer dentify the terms, their coefficients for each of the following expressions:

     (i)   5xyz2 – 3zy      (ii)  1 + x + x2      (iii) 4x2y2 – 4x2y2z2 + z2      (iv) 3 – pq + qr – rp      (v)       (vi) 0.3 a – 0.6 ab + 0.5 b

Sol.  (i)     5xyz2 – 3zy

Step-by-step explanation:

Similar questions