Math, asked by tusharlandge2004, 10 months ago

Value
of
3 + cot 80 cot 20/cot80+cot20 is equal to​

Answers

Answered by pulakmath007
41

SOLUTION :

TO DETERMINE

The value of

 \displaystyle \sf{ \frac{3 +  \cot  {80}^{ \circ}  \cot  {20}^{ \circ} }{  \cot  {80}^{ \circ}   + \cot  {20}^{ \circ}}    \: }

EVALUATION

 \displaystyle \sf{ \frac{3 +  \cot  {80}^{ \circ}  \cot  {20}^{ \circ} }{  \cot  {80}^{ \circ} +   \cot  {20}^{ \circ}}    \: }

 =  \displaystyle \sf{ \frac{3 +   \frac{ \cos {80}^{ \circ}  \cos {20}^{ \circ}}{ \sin {80}^{ \circ}  \sin {20}^{ \circ}} }{   \frac{\cos {80}^{ \circ}  }{\sin{80}^{ \circ}  } + \frac{\cos {20}^{ \circ}  }{\sin{20}^{ \circ} } }    \: }

 =  \displaystyle \sf{  \frac{3 \sin {80}^{ \circ}  \sin {20}^{ \circ} + \cos {80}^{ \circ}  \cos {20}^{ \circ}  }{\sin {80}^{ \circ}  \cos {20}^{ \circ} + \cos {80}^{ \circ}  \sin {20}^{ \circ}} \: }

 =  \displaystyle \sf{  \frac{3 \times 2 \sin {80}^{ \circ}  \sin {20}^{ \circ} +2 \cos {80}^{ \circ}  \cos {20}^{ \circ}  }{2\sin ({80}^{ \circ}  +  {20}^{ \circ}) }}

 =  \displaystyle \sf{  \frac{3  ( \cos {60}^{ \circ}  -  \cos {100}^{ \circ}) + ( \cos {60}^{ \circ}   +   \cos {100}^{ \circ})   }{2\sin {100}^{ \circ}  }}

 =  \displaystyle \sf{  \frac{4\cos {60}^{ \circ}  -  2\cos {100}^{ \circ} }{2\sin {100}^{ \circ}  }}

 =  \displaystyle \sf{  \frac{2\cos {60}^{ \circ}  -  \cos {100}^{ \circ} }{\sin {100}^{ \circ}  }}

 =  \displaystyle \sf{  \frac{2 \times  \frac{1}{2}   -  \cos {100}^{ \circ} }{\sin {100}^{ \circ}  }}

 =  \displaystyle \sf{  \frac{1   -  \cos {100}^{ \circ} }{\sin {100}^{ \circ}  }}

 =  \displaystyle \sf{  \frac{2  {\sin}^{2}  {50}^{ \circ} }{2\sin {50}^{ \circ}\cos {50}^{ \circ}   }}

 =  \displaystyle \sf{  \frac{  {\sin}  {50}^{ \circ} }{\cos {50}^{ \circ}   }}

 =  \sf{\tan {50}^{ \circ}}

RESULT

 \boxed{ \displaystyle \sf{ \:  \:  \frac{3 +  \cot  {80}^{ \circ}  \cot  {20}^{ \circ} }{  \cot  {80}^{ \circ} +   \cot  {20}^{ \circ}}    \: }  = \tan {50}^{ \circ}   \:  \:  \:  \:  \: }

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

In a triangle, prove that

(b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions