Math, asked by sarithaguduri10, 7 months ago

value of 3 sin 30 - 4 sin cube 30+4cos cube 30-3 cos 30​

Answers

Answered by Asterinn
8

We have to find the value of :-

3 \sin(30\degree)  - 4 { \sin}^{3} (30\degree) + 4 { \cos}^{3} (30\degree) - 3 \cos(30\degree)

we know that :

 \implies\sin(30\degree)  =  \dfrac{1}{2}

\implies\cos(30\degree)  =  \dfrac{ \sqrt{3} }{2}

Now put above values in the given expression :-

\implies3 \sin(30\degree)  - 4 { \sin}^{3} (30\degree) + 4 { \cos}^{3} (30\degree) - 3 \cos(30\degree)

\implies(3 \times  \dfrac{1}{2} )  - 4 {(  \frac{1}{2} )}^{3}  + 4 {  (\frac{ \sqrt{3} }{2}) }^{3}  - (3  \times  \frac{ \sqrt{3} }{2} )

\implies \dfrac{3}{2}  - (4 \times  { \dfrac{1}{8} }  )+ 4 {  (\dfrac{ 3\sqrt{3} }{8}) } - (\dfrac{ 3\sqrt{3} }{2} )

\implies \dfrac{3}{2}  - (  { \dfrac{1}{2} }  )+  {  (\dfrac{ 3\sqrt{3} }{2}) } - ( \dfrac{ 3\sqrt{3} }{2} )

\implies \dfrac{3}{2}  -   { \dfrac{1}{2} }  +  0

LCM = 2

\implies \dfrac{3 - 1}{2}    +  0

\implies \dfrac{2}{2}

Cancel out 2 from numerator and denominator :-

\implies 1

Answer : 1

_________________________

\large\bf\red{Additional-Information}

1. Cosθ = base / hypotenuse

2. cossecθ = 1/ sinθ

3. sec θ = 1/cosθ

4. Cotθ = 1/ tanθ

5. Sin²θ+ Cos²θ= 1

6. Sec²θ - tan²θ = 1

7. cosec ²θ - cot²θ = 1

8. sin(90°−θ) = cos θ

9. cos(90°−θ) = sin θ

10. tan(90°−θ) = cot θ

11. cot(90°−θ) = tan θ

12. sec(90°−θ) = cosec θ

13. cosec(90°−θ) = sec θ

14. Sin2θ = 2 sinθ cosθ

15. cos2θ = Cos²θ- Sin²θ

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

_______________________

Answered by Anonymous
103

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\bf{3\sin \left(30^{\circ \:}\right)-4\sin ^3\left(30^{\circ \:}\right)+4\cos ^3\left(30^{\circ \:}\right)-3\cos \left(30^{\circ \:}\right)}}

♣ ᴀɴꜱᴡᴇʀ :

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \sin \left(30^{\circ \:}\right)=\frac{1}{2}

\mathrm{Use\:the\:following\:trivial\:identity}:\quad \cos \left(30^{\circ \:}\right)=\frac{\sqrt{3}}{2}

\sf{=3\cdot \dfrac{1}{2}-4\left(\dfrac{1}{2}\right)^3+4\left(\dfrac{\sqrt{3}}{2}\right)^3-3\cdot \dfrac{\sqrt{3}}{2}}

\sf{3\cdot \dfrac{1}{2}-4\left(\dfrac{1}{2}\right)^3+4\left(\dfrac{\sqrt{3}}{2}\right)^3-3\cdot \dfrac{\sqrt{3}}{2}=1}

\large\boxed{\bf{3\sin \left(30^{\circ \:}\right)-4\sin ^3\left(30^{\circ \:}\right)+4\cos ^3\left(30^{\circ \:}\right)-3\cos \left(30^{\circ \:}\right)=1}}

Similar questions