Math, asked by yashasjawali, 7 months ago

value of 361 raised to power log 5 to the base 19

Answers

Answered by pulakmath007
8

SOLUTION

TO DETERMINE

The value of

\displaystyle \sf{  {361}^{ log_{19}(5) } }

EVALUATION

Let

\displaystyle \sf{  {361}^{ log_{19}(5) } = x }

Taking logarithm in both sides we get

\displaystyle \sf{   log_{19}(5)  =  log_{361}(x)  }

\displaystyle \sf{ \implies  log_{361}(x) =   log_{19}(5) }

\displaystyle \sf{ \implies   \frac{ log(x) }{ log(361) }  =    \frac{ log(5) }{ log(19) }  }

\displaystyle \sf{ \implies   \frac{ log(x) }{ log( {19}^{2} ) }  =    \frac{ log(5) }{ log(19) }  }

\displaystyle \sf{ \implies   \frac{ log(x) }{2 log( {19}) }  =    \frac{ log(5) }{ log(19) }  }

\displaystyle \sf{ \implies   \frac{ log(x) }{2 }  =    log(5) }

\displaystyle \sf{ \implies    log(x)   =   2 log(5) }

\displaystyle \sf{ \implies    log(x)   =    log( {5}^{2} ) }

\displaystyle \sf{ \implies    log(x)   =    log(25) }

\displaystyle \sf{ \implies    x  =   25 }

FINAL ANSWER

Hence the required value of x = 25

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If log (0.0007392)=-3.1313 , then find log(73.92)

https://brainly.in/question/21121422

2.If 2log((x+y)/(4))=log x+log y then find the value of (x)/(y)+(y)/(x)

https://brainly.in/question/24081206

Similar questions