Math, asked by rithishbhuvi, 1 year ago

value of 6p10-15p8+10p6+7​

Answers

Answered by Anonymous
1

Answer: 8

Concept: Use of trigonometric formula

Given: Pn= cos^nx+sin^nx

To Find: Value of 6p10-15p8+10p6+7

Step-by-step explanation:

Let's first find the value of Pn-Pn-2

Pn-Pn-2= cos^(n)x+sin^(n)x- cos^(n-2)x- sin^(n-2)x

            =cos^(n-2)x[cos^2x-1]+sin^(n-2)x[sin^2x-1]       ...................(1)

Now as per trigonometry formula

sin^2x+cos^2x=1

⇒sin^2x-1= -cos^2x  ..................... (a)

⇒cos^2x-1= -sin^2x .......................(b)

Now place (a) and (b) in (1)

Pn- Pn-2= cos^(n-2)x[ -sin^2x] + sin^(n-2)x [-cos^2x]

            = -sin^2x.cos^2x [ cos^(n-4)x+ sin^(n-4)x ]

            = -sin^2x.cos^2x [ Pn-4 ]                                    ........................( 2)

Now we have to find value of

6P10-15P8+10P6+7

= 6P10-6P8-9P8+9P6+P6-P4+P4-P2+P2+7

= 6[P10-P8]-9[P8-P6]+[P6-P4]+[P4-P2]+P2+7

Now using (2) in above equation

= -6[ sin^2x.cos^2x.P6]+9[sin^2xcos^2x.P4]+P2+P0+sin^2x+cos^2x+7

= -sin^2x.cos^2x[6P6-9P4+9P2+P0]+1+7

= -sin^2x.cos^2x[6P6-6P4-3P4+3P2-2P2+P0]+8

=  -sin^2x.cos^2x[6P2-3P0]+8                                                  .......................(3)

Now P0=cos^0.x + sin^0.x= 1+1= 2

Placing value of P0 in (3)

=  -sin^2x.cos^2x [6-6]+8

= 0+8

= 8

The correct answer is 8.

Project code:#SPJ2

Similar questions