value of A =30 then prove that sinA = tan A /√1+tan^2A
Answers
Answered by
2
Step-by-step explanation:
Given :-
A = 30°
To find:-
If A =30° then prove that sinA = tan A /√1+tan^2A
Solution:-
Given that A = 30°
LHS:-
Sin A
=> Sin 30°
=> 1/2
LHS = 1/2 -------------------------(1)
RHS:-
tan A /√1+tan^2A
=> Tan 30° /√(1+ Tan^2 30°)
=> (1/√3) / √[1+ (1/√3)^2]
=> (1/√3)/√[1+(1/3)]
=> (1/√3) / √[(3+1)/3]
=> (1/√3) / √(4/3)
=>( 1/√3) / (2/√3)
=> (1/√3) × (√3/2)
=> √3/(√3 × 2)
=> 1/2
RHS= 1/2 ---------------------(2)
From (1)&(2)
LHS = RHS
sinA = tan A /√1+tan^2A
Answer:-
Verified the given realtion that
sinA = tan A /√1+tan^2A for A = 30°
Used formulae:-
- Sin 30°=1/2
- Tan 30°=1/√3
Similar questions