Math, asked by gaurangdhumal, 2 months ago

Value of Combination C(8,1) is​

Answers

Answered by UtsavPlayz
1

C(n, k)= \dbinom nk= \: ^nC_k=\dfrac{n!}{k!(n-k)!}

 \implies  ^8C_1=\dfrac{8!}{1!(8-1)!} =  \dfrac{8!}{7!}

 = \dfrac{8 \times 7!}{7!} = \boxed{8}

Answered by pulakmath007
1

Value of Combination C(8,1) is 8

Given :

The Combination C(8,1)

To find :

Value of Combination C(8,1)

Formula :

\displaystyle \sf{C(n,r)  = {}^{n}C_{r} = \frac{n!}{r! \: (n- r)!}}

Solution :

Step 1 of 2 :

Write down the given combination

The given combination is C(8,1)

Step 2 of 2 :

Find the value of the combination

C(8,1)

\displaystyle \sf{  = {}^{8}C_{1} }

\displaystyle \sf{ = \frac{8!}{1! \: (8 - 1)!} }

\displaystyle \sf{ = \frac{8!}{1! \: 7!} }

\displaystyle \sf{ = \frac{8 \times 7!}{1! \: 7!} }

\displaystyle \sf{ = \frac{8 }{1!} }

\displaystyle \sf{ = \frac{8 }{1} }

\displaystyle \sf{ =8 }

Value of Combination C(8,1) is 8

Similar questions