Math, asked by manavvd3966, 10 months ago

Value of cos cos squared theta minus 1 by sec square theta is

Answers

Answered by harendrachoubay
0

The value of \cos ^2\theta-\dfrac{1}{\sec^2\theta} is equal to zero(0).

Step-by-step explanation:

We have,

\cos ^2\theta-\dfrac{1}{\sec^2\theta}

To find, the value of \cos ^2\theta-\dfrac{1}{\sec^2\theta} is equal to

\cos ^2\theta-\dfrac{1}{\sec^2\theta}

=\cos ^2\theta-\cos ^2\theta

Using the trigonometric identity,

\cos A.\sec A=1

\cos A=\dfrac{1}{\sec A}

=\cos ^2\theta-\cos ^2\theta

= 0

The value of \cos ^2\theta-\dfrac{1}{\sec^2\theta} = 0

Thus, the value of \cos ^2\theta-\dfrac{1}{\sec^2\theta} is equal to zero(0).

Similar questions