Math, asked by řåhûł, 1 year ago

Value of cos inverse (cos 13pie/6)?

Answers

Answered by dashyyy
10
it would be -π/6 instead of π/6
Attachments:

řåhûł: It would be - pie/6 bruh not pie/6
řåhûł: Wait a sec i will give you edit option correct your answer
dashyyy: wait let me see
dashyyy: yaa
dashyyy: sorry
dashyyy: i forgot the minus
Answered by RockingStarPratheek
124

Answer

\sf{\cos^{-1} \left(\cos \left(\dfrac{13\pi }{6}\right)\right)}

  • We know cos⁻¹ can be written as arccos (Since Arccosine of y is defined as the inverse cosine of y. In simple Words inverse cosine function is defined as Arccosine)

\to\sf{\displaystyle\arccos \left(\cos \left(\frac{13\pi }{6}\right)\right)}

  • Rewrite the angles for cos(13π/6)

\to\sf{\displaystyle\arccos \left(\cos \left(\frac{12+1}{6}\pi\right)\right)}

\to\sf{\displaystyle\arccos \left(\cos \left( \left(\frac{12}{6}+\frac{1}{6}\right)\pi\right)\right)}

\to\sf{\displaystyle\arccos \left(\cos \left( \left(2+\frac{1}{6}\right)\pi\right)\right)}

\to\sf{\displaystyle\arccos \left(\cos  \left(2\pi+\frac{1}{6}\pi\right)\right)}

  • Apply the Periodicity of cos : \sf{\cos (x+2 \pi \cdot k)=\cos (x)}

\to\sf{\displaystyle\arccos \left(\cos  \left(\frac{1}{6}\pi\right)\right)}

\to\sf{\displaystyle\arccos \left(\cos  \left(\frac{\pi}{6}\right)\right)}

  • We know :

\bigstar\:\:\:\sf{\mathsf{If}\:a=\arccos \left(b\right)\quad \Rightarrow \quad \cos \left(a\right)=b,\:\mathsf{for}\:0\le \:a\le \:\pi }

  • From this We get

\bigstar\:\:\:\sf{\displaystyle x=\arccos \left(\cos \left(\frac{\pi }{6}\right)\right)\quad \Rightarrow \quad \cos \left(x\right)=\cos \left(\frac{\pi }{6}\right),\:0\le \:x\le \:\pi }

Now solve cos(x) = cos(π/6)

  • Using the following Trivial Identity : cos(π/6) = √3/2

\to\sf{\displaystyle \cos \left(x\right)=\frac{\sqrt{3}}{2}}

  • General solutions for cos(x) = √3/2

(from cos(x) periodicity table with 2πn cycle) :

\to\sf{\displaystyle x=\frac{\pi }{6}+2\pi n,\:x=\frac{11\pi }{6}+2\pi n}

  • We need solutions for the range 0 ≤ π ≤ 6

\boxed{\boxed{\to\sf{x=\frac{\pi }{6}}}}

Therefore,

\large\boxed{\boxed{\sf{\cos^{-1} \left(\cos \left(\dfrac{13\pi }{6}\right)\right)=\dfrac{\pi }{6}\quad }}}

Similar questions