Math, asked by shardulmahindrakar25, 9 months ago

Value of cot^2x(secx-1)/1+sinx + sec^2x(sinx-1)/1+secx=?
Best answer will be awarded brainliest by me

Answers

Answered by wadmech
3

Answer:

if any confusion, let me know.

Attachments:
Answered by RvChaudharY50
20

\huge{\mathfrak{\overbrace{\underbrace{\pink{\fbox{\green{\blue{\bf\:S}\pink{o}\red{l}\orange{u}\purple{t}\blue{i}\green{o}\red{n}}}}}}}}

\purple\longmapsto\footnotesize\:cot^2x(\dfrac{secx-1}{1+sinx})+sec^2x(\dfrac{sinx-1}{1+secx}) \\  \\ \purple\longmapsto\footnotesize\:\frac{cot^2x(secx-1)(secx+1)+sec^2x(sinx-1)(sinx+1)}{(1+sinx)(1+secx)} \\  \\\purple\longmapsto\footnotesize \:\frac{cot^2x(sec^2x-1)+sec^2x(sin^2x-1)}{(1+sinx)(1+secx)} \\  \\\purple\longmapsto\footnotesize\frac{cot^2x(tan^2x)+sec^2x(-cos^2x)}{(1+sinx)(1+secx)} \\  \\ \purple\longmapsto\footnotesize\frac{cot^2x(tan^2x)-sec^2x(cos^2x)}{(1+sinx)(1+secx)} \\  \\\purple\longmapsto\footnotesize\frac{\frac{1}{tan^2x}(tan^2x)-\frac{1}{cos^2x}(cos^2x)}{(1+sinx)(1+secx)} \\  \\\purple\longmapsto\footnotesize\frac{1-1}{(1+sinx)(1+secx)} \\  \\  \purple\longmapsto\footnotesize \:\frac{0}{(1+sinx)(1+secx)} \\  \\ \purple\longmapsto \: \pink{\large\boxed{\boxed{\bold{0}}}}

\rule{200}{4}

\bold{\boxed{\huge{\boxed{\orange{\small{\boxed{\huge{\red{\bold{\huge\bold{\red{\ddot{\smile}}}}}}}}}}}}}

\rule{200}{4}

Similar questions