Math, asked by sankithanaiker, 1 month ago

value of cot(cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(1)+21) is?​

Answers

Answered by ItzDinu
3

\huge\mathcal\colorbox{lavender}{{\color{b}{✿Yøur-Añswer♡}}}

\large\bf{\underline{\red{VERIFIED✔}}}

\huge{\underline{\mathtt{\red{Q}\pink{U}\green{E}\blue{S}\purple{T}\orange{I}\red{0}\pink{N}}}}

value of cot(cot^-1(3)+cot^-1(7)+cot^-1(13)+cot^-1(1)+21) is?

\huge{\underline{\mathtt{\red{A}\pink{N}\green{S}\blue{W}\purple{E}\orange{R}}}}

cot[tan^{ - 1}( \frac{1}{3} ) + tan^{ - 1}( \frac{1}{7} ) + tan^{ - 1}( \frac{1}{13} ) + tan^{ - 1}( \frac{1}{21} )]  \\ Using, \\ tan^{ - 1}x + tan^{ - 1}y = tan^{ - 1}[ \frac{(x + y)}{(1 - xy)}],  \\ we \:  get, \\cot[tan^{ - 1}( \frac{1}{2} ) + tan^{ - 1}( \frac{1}{8} )] =  \frac{3}{2}

\boxed{I \:Hope\: it's \:Helpful}

{\sf{\bf{\blue{@ℐᴛz ᴅɪɴᴜ࿐}}}}

Similar questions