value of d/dx{(sinx)^cosx} ?
Answers
Answered by
1
Answer:
Step-by-step explanation:
Y = (sin x)^cos x ,
Taking log both sides ,
LnY = cos x Ln(sin x) ,
Differentiating both sides we get ,
1/Y (dY/dx) = cos x (cos x/sin x) + (-sin x) Ln(sinx) ,
dY/dx = Y {cos x (cos x/sin x) + (-sin x) Ln(sinx)} ,
Now put Y = (sin x)^cos x ,
d/dx [(sin x)^cos x] = {(sin x)^cos x} ,
{cos x (cos x/sin x) + (-sin x) Ln(sinx)}.
Hope it helps.
Answered by
1
hope this helps u. .......
step-by-step explanation:
Y = (sin x)^cos x ,
Taking log both sides ,
LnY = cos x Ln(sin x) ,
Differentiating both sides we get ,
1/Y (dY/dx) = cos x (cos x/sin x) + (-sin
x) Ln(sinx) ,
dY/dx = Y {cos x (cos x/sin x) + (-sin x)
Ln(sinx)} ,
Now put Y = (sin x)^cos x ,
d/dx [(sin x)^cos x] = {(sin x)^cos x} ,
{cos x (cos x/sin x) + (-sin x) Ln(sinx)}.
Hope it helps.
Attachments:
Similar questions