Math, asked by scs256861, 1 month ago

value of d/dx(tanx) solve this

Answers

Answered by RvChaudharY50
3

Question :- find the value of d/dx (tan x) ?

Solution :-

→ f(x) = (tan x)

using tan x = sin x / cos x ,

→ f'(x) = (sin x / cos x)

using quotient rule now we get,

→ f'(x) = [d/dx (sin x) * cos x - sin x * d/dx( cos x)] / (cos x)²

→ f'(x) = [{cos x * cos x - sin x * (- sin x)}/ cos ²x]

→ f'(x) = (cos² x + sin ² x) / cos²x

using sin²A + cos²A = 1 in numerator,

→ f'(x) = (1/ cos ²x)

using (1/cosA) = sec A ,

→ f'(x) = sec² x (Ans.)

Learn more :-

prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA

https://brainly.in/question/15100532

help me with this trig.

https://brainly.in/question/18213053

Answered by hukam0685
2

Step-by-step explanation:

Given: tan x

To find: Derivative of tan x

Solution:

Step 1: Write tan x in terms of sin x and cos x

tan \: x =  \frac{sin \: x}{cos \: x} \\

Step 2: Do differentiation using quotient rule

 \frac{d}{dx}\left( \frac{U}{V}\right)  =  \frac{V \frac{dU}{dx}  - U \frac{dV}{dx} }{ {V}^{2} }  \\  \\

here

U= sin x

V= cos x

 \frac{d}{dx} \left( \frac{sin \: x}{cos \: x}  \right)=  \frac{cos \: x \:  \frac{d}{dx}(sin\:x) - sin \: x \:  \frac{d}{dx}(cos \: x)}{ {cos}^{2}x }  \\  \\

we know that

 \frac{d}{dx}(sin \: x) = cos \: x \\  \\  \frac{d}{dx}(cos \: x) = -  sin \: x \\

Thus,

\frac{d}{dx} \left( \frac{sin \: x}{cos \: x}  \right)  =  \frac{cos \: x. \:  cos \: x - sin \: x \:  ( - sin \: x)  }{ {cos}^{2}x }  \\  \\ \frac{d}{dx} \left( \frac{sin \: x}{cos \: x}  \right)  =  \frac{ {cos}^{2}  \: x  +  {sin}^{2}  \: x \:  }{ {cos}^{2}x }  \\  \\

Step 3: Apply trigonometric identities

 \frac{d}{dx} \left( \frac{sin \: x}{cos \: x}  \right)   =  \frac{1}{ {cos}^{2} x}  \\  \\  \because \:  {cos}^{2} x +  {sin}^{2} x = 1 \\  \\ \frac{d}{dx}(tan \: x) =  {sec}^{2} x \\  \\ \because \:  \frac{1}{cos \: x}  = sec \: x \\  \\

Final answer:

\bold{\red{ \frac{d}{dx} (tan \: x) =  {sec}^{2}x}} \\

Hope it helps you.

To learn more on brainly:

1) \: \:see\:the\:attachment

[tex]prove \: that \: \: \\ \\ \displaystyle \int_0^1 \frac{dx}{ \sqrt{...

https://brainly.in/question/41086710

2)Differentiate w.r.t.x. : cos² (log (2x + 3))

https://brainly.in/question/6633326

Similar questions