value of fourth root 124+32√15
Answers
Answered by
3
Given: The expression 124+32√15
To find: The value of fourth root 124+32√15 .
Solution:
- Now we have given the term as:
124 + 32√15
- We can write it as:
64 + 60 + 32√15
(8)^2 + (2√15)^2 + 2x8x2√15
- Now this in the form (a^2 + b^2 + 2ab) = (a+b)^2
(8 + 2√15)^2
- We can write it as:
((√3)^2 + (√5)^2 + 2√3√5)^2
- Now this in the form (a^2 + b^2 + 2ab) = (a+b)^2
( (√3 + √5)^2 )^2
(√3 + √5)^4
- Now :
fourth root 124+32√15 = (√3 + √5)^4
124+32√15 = ((√3 + √5)^4 )^1/4
- Cancelling the power we get:
(√3 + √5)
Answer:
So the value of fourth root 124+32√15 is (√3 + √5).
Similar questions