Math, asked by gamer0001, 9 months ago

value of integration cos30dx?​

Attachments:

Answers

Answered by DAMSONPIOSON
1

Answer:

-sin 30=-1/2

Step-by-step explanation:

since ...

WE know that :integration of cos x.dx is -sin x

so cos 30 .dx =-sin 30 +c

=-1/2 + c

Answered by pulakmath007
0

\displaystyle \sf{ \int  \:  cos \: {30}^{ \circ}  \: dx    } =  \frac{ \sqrt{3} }{2}x + c

Given :

The integral

\displaystyle \sf{ \int  \:  cos \: {30}^{ \circ}  \: dx    }

To find :

Integrate the integral

Solution :

Step 1 of 2 :

Write down the given Integral

The given Integral is

\displaystyle \sf{ \int  \:  cos \: {30}^{ \circ}  \: dx    }

Step 2 of 2 :

Integrate the integral

\displaystyle \sf{ \int  \:  cos \: {30}^{ \circ}  \: dx    }

\displaystyle \sf{  = \int  \:   \frac{ \sqrt{3} }{2}   \: dx    }

\displaystyle \sf{  =  \frac{ \sqrt{3} }{2}  \int   dx    }

\displaystyle \sf{  =  \frac{ \sqrt{3} }{2}  x    + c }

Where c is integration constant

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

2. If integral of (x^-3)5^(1/x^2)dx=k5^(1/x^2), then k is equal to?

https://brainly.in/question/15427882

Similar questions